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Abstract

We investigate the long time asymptotics for the solutions to the Cauchy problem of defocusing modified
Kortweg-de Vries (mKdV) equation with finite density initial data. The present paper is the subsequent work
of our previous paper [arXiv:2108.03650], which gives the soliton resolution for the defocusing mKdV
equation in the central asymptotic sector {(x,?) : |§| < 6} with & := x/¢. In the present paper, via the
Riemann-Hilbert (RH) problem associated to the Cauchy problem, the long-time asymptotics in the soliton-
less regions {(x, 1) : || > 6, |§] = O(1)} for the defocusing mKdV equation are further obtained. It is shown
that the leading term of the asymptotics is in compatible with the “background solution” and the error terms
are derived via rigorous analysis.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In the present work, we investigate the long time asymptotics in soliton-less regions for the
defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data:

qr(x, 1) — 6¢%(x, 1)qx (X, 1) + quxx (x,1) =0, (x,7) e R x R4, (1.1)
g(x.00=qo(x), lim go(x)==£l. (1.2)

Remark 1.1. Generally, the finite type initial data is presented by the nonzero boundary condition
limy s 400 g0 (x) = g+, |q+| = qo. Taking the following transformation

u=gq/q0, I=qox, I=qpt,

we have
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up(x, 1) — 6u® (X, Duz (%, 1) +uzzz (5,7) =0,

with the normalized boundary conditions limz_, 40 ¥ = g+/q0, |q+/qo| = 1. Based on the anal-
ysis, we directly choose the boundary condition of initial data as (1.2) for convenience.

Remark 1.2. The “soliton-less regions” doesn’t represent that there exist no solitons in our
present work. Indeed, we use a interpolation transformation to convert residue conditions for
poles to jump conditions such that the jump matrices vanish as t — oo. In our result, the solitons
make few contributions (exponential decay) for the obtained asymptotics.

The mKdV equation arises in various of physical fields, such as acoustic wave and phonons in
a certain anharmonic lattice [28,33], Alfvén wave in a cold collision-free plasma [18,22]. A con-
siderable amount of work has been carried out around the long time asymptotics for defocusing
mKdV equation (1.1). The earliest work can be traced back to Segur and Ablowitz [2], who ex-
tend the method developed by Zakharov and Manakov [34] to derive the leading asymptotics for
the solution of the mKdV equation, including full information on the phase. The most influential
work to investigate the long time behavior of integrable PDEs is the nonlinear steepest descent
method which was firstly proposed by Deift and Zhou (Deift-Zhou method) to study the defocus-
ing mKdV equation [14]. Lenells proves a nonlinear steepest descent theorem for RH problems
with Carleson jump contours, where jump matrices admit low regularity and slow decay [23].
Recently, Chen and Liu extend the asymptotics to the solution for defocusing mKdV equation
with initial data in lower regularity spaces [11]. The works mentioned above refer to that initial
data go(x) admits zero boundary conditions (ZBCs, i.e., go(x) — 0 as x — +00).

Studies for the long time asymptotic behavior of the integrable systems with nonzero bound-
ary conditions (NBCs) have been investigated in a number previous articles. Specifically, the
nonzero boundary conditions could be divided into the asymmetric NBCs (i.e., go(x) — g+ with
lg+] # |g—|, also be called “step-like” initial data) and symmetric NBCs (i.e., go(x) — g+ with
lg+] = |g—| # 0). For the long time asymptotic behavior for integrable PDEs with asymmetric
NBCs, refer [5,6,9,19-21,25]. For the symmetric NBCs, a lot of works for long time asymp-
totics have been investigated around nonlinear Schrodinger (NLS) equation, see [7,8,30,31].
S. Cuccagna and R. Jenkins [10] develop the 8 generalization which was firstly proposed by
McLaughlin and his collaborators [4,12,26,27] to verify the soliton resolution for defocusing
NLS equation with finite initial data in an asymptotic soliton regime |x/2¢| < 1. The method
used in [10] is applied to investigate the asymptotics for |x /2¢| > 1 by Wang and Fan [32].

For the defocusing mKdV equation with finite density initial data defined by (1.1)-(1.2),
Zhang and Yan [36] use the inverse scattering transform (IST) to express the solution in terms of
the associated RH problem and prove that the discrete spectrum are distributed on the unit circle
in the complex plane. For comparison, only focusing mKdV equation posses discrete spectrum
under ZBCs. In the presence of discrete spectrum for defocusing mKdV equation with finite den-
sity initial data, we exhibit the soliton resolution and asymptotic stability in the previous article
[35] for |&| < 6, and the asymptotics for |&]| > 6, |§] = O(1) in the present work.

1.1. Main results
The main result of this work is exhibited in the following theorem that reveals the long time
asymptotic behavior of the solution g(x,#) of defocusing mKdV equation (1.1) in different

asymptotic sectors (see Fig. 1), where
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Fig. 1. Asymptotic sectors for the solution ¢ (x, t) for mKdV equation.

Rrp={(x,0):§<—6,1§| =01}, Ry={(x,1):-6<§ <6},
Rr={(x,1):£>6,[§|=0)}, &:=x/1.

Theorem 1.3. Let g(x, t) be the solution for the Cauchy problem (1.1) with generic data qo(x) —
tanh(x) € H**(R) associated to scattering data {r(z), {nn, cn}ﬁgl } As t — +00, the following
three asymptotics are shown.

(a) For (x,t) € R (left field),

GO D) =—1+172f(E) + 00 1), (1.3)

where

: -3 -1 SR S

2
j=1 Ej

with €; = (=171 for j = 1,2,3,4, & defined by (3.8)-3.9) for j = 1,2,3.4, B3 and

()

B,y defined by (A.24)-(A.26) for j =1, 3, while by (A.50)-(A.52) for j =2,4.
(b) For (x,t) € Ry
N
qx.)=—1+4 [sol(zj.x —x;.) + 1]+ 0@ ™). (1.4)
j=0

(c) For (x,t) € Rp (right field),

gx,nH)=1+0¢"". (1.5)
Remark 1.4. Comparing to the results in [10], [32] for defocusing NLS equation, the asymptotics
in Theorem 1.3 is real-valued, which owes to the mKdV equation is a real-valued integrable

PDE. It’s find that the asymptotics (1.3) is formally similar to the asymptotics in [32], and the

58



T. Xu, Z. Zhang and E. Fan Journal of Differential Equations 372 (2023) 55-122

sub-leading term stems the contribution from four saddle points (in the case of mKdV equation)
and two saddle points (in the case of NLS equation) respectively. The other difference between
the present work and [32] is the asymptotics in right field, where the error bounds of the former
mainly stem from the 3 estimation by O(t~1).

Remark 1.5. q‘”’l (x,t) = tanh(x) is the stationary solution of (1.1)-(1.2), which is called the
dark soliton.

Remark 1.6. |£| = O(1) is needed to ensure the following issues:

- The saddle points &1, &4 defined by (3.8) are bounded;

- The estimates for J6(z), jump matrix and 9 derivatives are reasonable, see Proposition 4.4,
Proposition 4.7, Proposition 4.9, Proposition 4.14, Proposition 4.15, Proposition 4.28 and Propo-
sition 5.3;

- The higher power term of the expansion for 6 (z) near saddle points could decay as t — 0o, see
Remark 4.19.

If removing the condition |x/f| = O(1), we can turn to study the large x asymptotic behavior in
a similar way to large ¢ asymptotics.

Remark 1.7. In an early version of this paper, Ry is set by & € (=2, 400), |§] = O(1) instead
of & € (6,+00), |&| = O(1). The reason why we modify this condition is that we find when
& € (—2, 6), the asymptotics Theorem 1.3(b) is matched with the asymptotics in the right field
by setting the index A = @ in [35]. Indeed, solitons make no contribution for the asymptotics
when & > —2. On one side, we can set £ € (—2, 6) as the special part of R (but we should
know where A = ). On the other side, we can set £ € (—2, 6) as the part of right field, that’s
because there are no soliton contributions for the asymptotics.

Remark 1.8. The smoothness and decay properties of the reflection coefficient r(z) are needed
in our analysis.

- Proposition 2.5 shows that: gg — tanh(x) € H33R) = qo — tanh(x) € LY 2R) = r(z) €
H'(R).

-Eq. (2.29) shows r(z) = O(z7%) as z — 00, and we can obtain that r(z) also belongs to L] (R).
Moreover, r(z) € HVH(R) = L>1(R) N H!(R). It’s Corollary 2.7.

The condition gg — tanh(x) € H 44(R) in Theorem 1.3 is needed to include all conditions to
show that r(z) € H'(R), which can help us bound the 8 derivatives of our extensions in Propo-
sition 4.9, Proposition 4.28 and Proposition 5.3, etc.

1.2. Outline of this paper

The structure of this work is as follows.

Section 2 and Section 3 are the preliminary parts. In Section 2, we review the elementary
results on the associated RH problem formulation of the Cauchy problem for the defocusing
mKdV equation (1.1), which is the basis to analyze the asymptotic behavior of the defocusing
mKdV equation in our work. In Section 3, we present the distribution of phase points of 6 (z) and
depict the signature tables of ¢*/? by some numerical figures.

In Section 4, we mainly deal with the asymptotics for & € Ry. In Subsection 4.1, jump ma-
trix factorizations corresponding to this case are given. In Subsection 4.2, a scalar function §(z)
which could use the factorizations of the jump matrix along the real axis to deform the contours
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onto those which the oscillatory jump on the real axis for exponential decay, and a interpolation
function G(z) which interpolates the poles by trading them for jumps along small closed circles
around each poles are introduced to make the first transformation M (z) - M (M (z). In Subsec-
tion 4.3, we open 9 lenses to set up a mixed 3-RH problem M @ (z), which consists of a pure
RH problem MP®)(z) and a pure d-problem M3 (z). In Subsection 4.4, analysis on pure RH
problem M (PR (z) is exhibited, which refer to two standard parts: global parametrix M (z)
and local parametrix M L€ (z). Error analysis via using small-norm RH theory is also given. In
Subsection 4.5, we give the rigorous analysis for the pure d-problem M) (z). In Subsection 4.6,
the asymptotics in Theorem 1.3(a) is given by reviewing a series of transformations we use in
this section.
Similar techniques to Section 4 are used to analyze the asymptotics for £ € Ry in Section 5.

1.3. Notations

We conclude this section with some notations used throughout this paper.
- Japanese bracket (x) :=+/1 + |x|2 is widely used in some normed space.
- A weighted LP*(R) is defined by L”*(R) = {u € LP(R) : (x)*u(x) € L?(R)}, with
lullzrs @y == 1(x) ullLrw)- _
- A Sobolev space is defined by W™"P(R) = {u € LP(R) : d/u(x) € LP(R) for j =
0,1,2,...,m}, with [ullynr®r) = ZT:O ||8j1/l||Lp(]R). Usually, we are used to expressing
H™(R) := W™2(R).
- A weighted Sobolev space is defined by H™*(R) := L>*(R) N H™(R).
- 01, 07, 03 are classical Pauli matrices as follows

(0 1 (0 —i (1 0
=1 0) 2=\i o) 2=\o 1)

-aSbie, e, st.a<chiej = (—1)J+,
- )M and J represent real part and imaginary part of a complex variable respectively.

2. Direct and inverse scattering transform
2.1. Lax pair and spectral analysis
The defocusing mKdV equation (1.1) admits the following Lax pair [1]
P, =X0, O,=T9, 2.1
where

X =ikos+ Q. T =4k>X — 2iko3(Qx — 0% +20° — Oy, Q=< 0 ‘1(’“”)>,

q(x,t) 0
and k € C is a spectral parameter.
By using the boundary condition of (1.2), the Lax pair (2.1) admits the following approxima-

tion
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Dy~ XDy, Oy ~Tidg,

x — +o0,
where

2.2)

Xy =ikoy+ Qs, Ti=(4k>+2)X4,
with Q4+ = +07.

The eigenvalues of X are £iA, which satisfy the equality

AV =k>—1. (2.3)

Since A is multi-valued, we introduce the following uniformization variable to ensure that our
discussion is based on a complex plane rather than a Riemann surface

z=k+A, 2.4)
and obtain two single-valued functions

1 1 1 1
AMD)=z@z—-), k(@=z@E+-). (2.5)
2 z 2 z
Remark 2.1. In the present work, we use the uniformization technique. Indeed, the other tech-

niques, such as [7,8] can be taken, which should deal with a branch cut. However, we have to
pay more attention to singular points which appears via uniformization method.

Define two domains D, D_ and their boundary X on z-plane by

1
Dy :={zeC, 311+

1
)>0}, D_:={zeC,3IA(1+
|z|?

5) <0}, Z:=R\{0}.
|z
The “background solution” of the asymptotic spectral problem (2.2) is given by

q)i ~ Ei(z)eik(z)xa‘%,

(2.6)
where

1+

EL= i 2z
F: 1
Introducing the modified Jost solution
pa = Dye M, 2.7)
then we have

ur~Eg, as x— Foo,

1
det(®z) = det(ps) =det(Ex) = 1 — —.
Z
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w+ are defined by the Volterra type integral equations

X

pa(xi2) = Ex(2) + / Ex(2e™00% [(EL ) AQx (W pe (i) dy, 2 #£1,
+oo
(2.8)

X

Mi(x;z)in(z)Jr/[1+(x—y)(Qiii03)]AQi(y)Mi(y;z)dy, z=+1, (2.9
+o0

where AQ=0Q — Q4.

The properties of p4+ are concluded in the following proposition, of which proof is similar to
[10, Lemma 3.3] owing to defocusing mKdV equation and NLS equation admit the same spatial
spectrum problem (¢ = 0).

Proposition 2.2. Given n € Ny, let ¢ — tanh(x) € L'""tI(R), ¢’ € WLI(R). Denote W, j the
Jj-th column of 4.

- For z e C\ {0}, pu4 1(x,1;2) and p— 2(x, t; 2) can be analytically extended to C and contin-
uously extended to CL U X; pu_ 1(x,t;z) and 4 2(x, t; 2) can be analytically extended to C_
and continuously extended to C_ U X.

- (Symmetry for pt) pu+(2) = o1+ @01 = ux(=2), px(2) = Epsz oo

- (Asymptotic behavior of u+ as z — oo) For Iz > 0 as z — oo,

1 2 o 2_
M+,1(Z)=el+g< i (_ql.q l)dx)+0(z—2), (2.10)

_ 1 iq -2
M—,Z(Z)—ez'i‘g(l.fxoo(qz_l)dx)+o(2 ), 2.11)
for 3z <0, as 7 —> oo

—i [2(q* — Ddx

-2
g ) +0@E), (2.12)

1
n-1(@)=er + - <
Z
_ 1 iq -2
M+,2(Z)—€2+E<ifxoo(q2_l)dx)+O(Z ). (2.13)
- (Asymptotic behavior of u+ as z— 0) For z€ C4, as 7 — 0,

(@) =—%€2+0(1), poa(z) = —’gel +Ox); 2.14)

forzeC_,asz— 0,

o1 (2) = ;—ez +OW), pia@)= ;—el +O(1):; (2.15)

where e} = (l,O)T, er = (0, l)T.
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Since @ (z) and ®_(z) are two fundamental matrix-valued solutions of (2.2) for z € \{£1},
thus there exists a scattering S(z) such that

dy(x,t:2) =D_(x,1;2)S). (2.16)

Owing to (2.7) and the symmetries of 4 (z), @4+ admit the following symmetry.

1
®L(z) =01P+L()o1 =DPr(—2), P+(z)= %‘Di(zq)@- (2.17)

Then the symmetry S(z) = 015(2)o1 = S(—2) = —02S (z7 Yo follows immediately. And S(z)
is given by

a@@ b()
S(z) = 7, e T\{+1}, 2.18
(2) (b(z) a(z)> z€ T\{£1} (2.13)
where a(z), b(z) are called scattering data.
Define
b(z) . b(2)
r):=——, r(@:=——. 2.19
(2) 2@ (2) aG) (2.19)
Several properties of a(z), b(z) and r(z) are given as follows.
Proposition 2.3. Let z € Z\{£1}, a(z), b(z) and r(z) be the data as mentioned above.
- The scattering coefficients can be expressed in terms of the Jost functions by
det(dy ¢, D det(d_ |, D
a(z) = Lﬁl), b(z) = (—]_2+1) (2.20)
-z 1-z
- For each 7 € \{£1}, we have
detS(@) =la@* - @I =1, [r@F=1-la@|?<1. (221)
- a(z), b(z) and the reflection coefficient r(z) satisfy the symmetries
a(z)=a(-z)=—aZ™), (2.22)
b(z) =b(—2) =b(Z ), (2.23)
r@2)=r(=2)=—-rE). (2.24)
- The scattering data admit the asymptotics
lim (a(z) — Dz =i /(q2 — Ddx, zeCy, (2.25)
—>00
R
lin})(a(z) + 1)z ™! =i/(q2 — dx, zeCy, (2.26)
—>
R
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and
Ib(z)| = O(zI72), as |z — oo, z€R, (2.27)
b@)|=0(z*),  aslz| >0, zeR. (2.28)
So that
r@)~z7% |zl = oo r(z)~z% |z] = 0. (2.29)

Proof. The first item follows by applying Cramer’s rule to (2.16). The second item can be ob-
tained by direct calculation. The third item follows from the symmetry of S(z). The fourth item
follows from the first item and the asymptotics of w4 in Proposition 2.2. O

Though a(z) and b(z) have singularities at -1, the reflection coefficient r (z) remains bounded
at z = +1 with |r(£1)| = 1. Indeed, as z —> £1

5% o), by = TE Lo (2.30)
1 zF 1

a(z) =
ZF

where St = ddet[; 1 1(£1, x), u_2(£1, x)]. Then lim, 1| r(z) = Fi follows.
Remark 2.4. The above discussions suggest that scattering data exhibit singular behavior for z
at =1, 0. The singularities of these functions at z = %1 can be removable, however, the singular

behavior at z = 0 plays a non-trivial and unavoidable role in our analysis.

The next proposition shows that, given data gg with sufficient smoothness and decay proper-
ties, the reflection coefficients will also be smooth and decaying.

Proposition 2.5. For given ¢ — tanh(x) € L'2(R), ¢’ € WH(R), then r(z) € H' (R).
Proof. The proof is the same with [35, Proposition 3.2]. O

Remark 2.6. ||r|| ;1R is widely used in the estimation below, such as Proposition 4.1, Propo-

sition 4.9, Proposition 4.28, Proposition 5.3, etc. In fact, we can claim that r(z) € H LIR), see
the following corollary.

Corollary 2.7. For given g — tanh(x) € L2(R), g’ € WLL(R), we have r(z) € HVL(R).

Proof. Since H"!'(R) = L>!(R) N H'(R), what we need to prove is that r € L>!(R). With
(2.29), we can see that

12112 (2) ~ 12|72, |z] = oo (2.31)

Thus

/I(z)r(z)l2 < o0, (2.32)
R
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\
T 4 Nz
1

Fig. 2. The discrete spectrums distribute on the unite circle {z : |z| = 1} on the z-plane.

which implies the result. O
In a similar way [13], we can show that zeros of a(z) are finite and simple, all of which are
placed on the unit circle {z : |z| = 1} (see Fig. 2). Suppose that a(z) has finite N simple zeros

21,22,---,2von Dy N{z:|z| = 1,3z > 0, Nz > 0}.
The symmetries of S(z) imply that

a(z,)) =0sai@Z,)=0a(-z,)=0&a(-z,)=0, n=1,...,N.
Therefore we give the discrete spectrum by
Z ={2n,%n — Zn» —Znlpess (2.33)
where z,, satisfies that |z,| = 1, Nz, > 0, Iz, > 0. Moreover, it is convenient to define that

Zn, nzl,...,N,
M = _ (2.34)
—Zn—N» n=N+1,,2N,

from which we express the set Z in terms of

Z =, )oY, (2.35)
Using trace formulae, a(z) is given by
2N ~
- 1 log(1 —
a(z):ﬂ(z 7_7n)exp __./wds , zeCy. (2.36)
Z— 1 2mi s—z

n=1
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Denoting norming constant ¢, = b, /a’(n,), the residue condition follows immediately

Res [’“‘*—I(Z)] = cpe P o (), (237)
=m | a(z)
Res [‘”TZ(Z)] = p @MY (7). (2.38)
=i L a(z)

Collect a4 = {ny, cn}ﬁﬁ | the scattering data. Now we try to carry out the time evolution of the
scattering data. If g also depends on time variable ¢, we can obtain the functions a(z) and b(z)
mentioned above for all times ¢ € R. Applying 9; to (2.1) and taking some standard arguments,
such as [15,16], we know that time dependence of scattering data could be expressed in terms of
the following replacement

Q) = c(t, nn) = (0, ) M @R 1, (2.39)

r @) — r(t,2) = r(0, 7)e* K+ (2.40)

Remark 2.8. At time ¢ = 0, the initial function g (x, 0) produces 4N simple zeros of a(z, 0). If
g evolves in terms of (1.1), then g (x, t) will produce exactly the same 4N simple zeros at time
0#1t € R for a(z, t). And the scattering data with time variable # can be given by

{r(Z)eM4k2+2)t {1 c(ﬂn)g)‘(nn)(4k2(77n)+2)t}ZN]}
b ) n— s

where {r(z), {nn, Cn}yZ,Z | } are corresponded to initial data go(x).

2.2. Set up of the Riemann-Hilbert problem

Define a sectionally meromorphic matrix as follows

<%,M_,z()¢,t;z)>, zeCy
M(x,t;z):= ) (2.41)
<M—,1(x,l;z),w), zeC_,
a(z)

which solves the following RH problem.

RH problem 2.9. Find a 2 x 2 matrix-valued function M (x, t; z) such that

- M(z) is analytical in C\(X U 2) and has simple poles in Z = {n,,, ﬁ'l}i/ll'
-M@)=01M@)o) =M(-2)=Fz "M@z oo

- The non-tangential limits M1 (z) = limg_,, M(s),s € C exist for any z € X and satisfy the
Jjump relation M (z) = M_(z)V (z) where

_ 2 N ,2it0
V(z) = <1r (Z)Z*(;‘)f"’ r(zl) ¢ ) zex, (2.42)
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with 0(z) = A(z) [* + 4k*(2) +2].
- Asymptotic behavior

M, t;2)=1+0z"), z- 00, (2.43)
M(x. 1) =2 4+0(), z—0. (2.44)
Z
- Residue conditions
ResM(z) = lim M(z) 0 0 (2.45)
z:eni 2= 7= < Cne—ZitO(n,,) 0/’ ’

ResM(z) = lim M(z)( (2.46)
Z—=>Mn

Z=Mn

0 Enezne(ﬁn)
0 0 '

The solution g (x, t) of (1.1) can be expressed in terms of the solution M of RH problem 2.9
via the following proposition.

Proposition 2.10. Assuming g — tanh(x) € L12(R) and ¢’ (x) € WHL(R), we have the following
asymptotics of M(z) as z — oo and z — 0:

. (=i [Z(¢* — Ddx iq
zlggoZ(M(Z) —D= < —iq ifxoo(c]2 - l)dx) ’ (2.47)
. N iq —i [X(q* - Ddx
lim (M (2) = 72) = (l. (2 1 i ) : (2.48)
And the solution q(x, t) of (1.1)-(1.2) is given by
CI(X,I)=—i(M1)12=—iZ1LH;O(ZM)12, (2.49)

where My appears in the expansion of M = I +z7 "My + O(z™2) as z — oo.
Proof. This proposition follows from the third item of Proposition 2.2. O
3. Distribution of saddle points and signature table

The exponential term appeared in the jump matrix of RH problem 2.9 plays a key role in our

analysis.
+2i16 1 Ly [ x 1
e , 0@=zz—=)|-+2+|z+- . 3.1
2 z t z

In this section, we present the analysis on the phase function 6(z), which include the saddle
points (see Fig. 3) and the signature tables for ¢%/%@) (see Fig. 4). Direct calculation shows that:
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+3 +3
30 =3y

T 3@, (3.2)

37+ 1“( )
~S —S —
ST T

N(Q2ith(z)) = —t [(S +3)z — (E+3)|z 7237+ 3 — 2703 )] (3.3)

To find the stationary phase points (or saddle points), we need 6’(z)

E+3 3 E+3

o'
@)= 222 T AT T

(3.4)

Proposition 3.1 (Distribution of saddle points). Besides two fixed saddle points i, —i, there exist
four saddle points which satisfy the following properties for different & (see Fig. 3):

- For § < —6, the four saddle points §; :=§;(&), j =1,2,3,4 are located on the jump contour
¥ = R\{0}. Moreover, we have &4 < —1 <& <0< & <1 <& and ) = Ez —&4;

- For —6 < & < 6, the four saddle points are away from the coordinate axis ( both real and
imaginary axis);

- For & > 6, the four saddle points are all located on the imaginary axis. Moreover, we have
JI61>1>36>0>38>—1>J& and £16 =&86,=—1.

Proof. From 6’(z) =0, we have
320+ (E+3) + (E+3)7 +3=0. (3.5)
Using factorization technique, we obtain
(142 (32 4622 +3) =0, (3.6)

From the equality, we have two fixed saddle points i, —i. And we can solve that

2 _ — 2 _
2o _5FVET 36 Vi%, or 2= _57VE =36 Vi%, 3.7)

For £ < —6, both — Sty 22_36 and — 5 %2_36 are greater than zero, and four roots are as follows.

| £— /8236 | &—E2-36
§1= —%, §4=— —L, (3.3)
2_36 2
) /_s+\/i ’ | E+VEP =36 s (3.9)

withrelation &y < —1 <& <0<& <l <§jandé =+ = 3’:3 —&4.

For —6 < & < 6, the discriminant £2 — 36 is less than zero. We can know that there exist four
saddle points &; =N (§;) + io(éj) where N(§;),3(§;)#0, j=1,2,3,4.
For & > 6, both — SJ” £2-36 and — &8 =36 V62_36

saddle points are as follows

are less than zero. And four pure imaginary
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(a) (b) (c)

Fig. 3. Plots of the distributions for saddle points: (a) £ < —6, (b) —6 < & < 6, (¢) £ > 6. The red curve represents
MO’(z) = 0, and the green curve represents J6’(z) = 0. The intersection points are the saddle points which represent
the zeros of 6 (z) = 0. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

£ =i £+62-36 52—36 §+E2-36 36 (3.10)
6 6
_ 2 _ 2
$z=is i 36 §-ver—36 E 36 (3.11)

with J&1 > 1> 36 >0> 383 > —1 > J&s and £1& = &8, = —

Remark 3.2. We can see that, for example, &, &4 defined by (3.8) can’t be co because of the
finite £ = O(1).

According to the Fig. 3 and Fig. 4. We can find that: for £ < —6, there exist four stationary
phase points besides i, —i, which are all located on the jump contour X as shown in Fig. 3(a) with
signature table shown in Fig. 4(a). For —6 < & < —2, the distribution of phase points is shown in
Fig. 3(b) and signature table is shown in Fig. 4(b). For £ > —2, there exist four stationary phase
points besides i, —i. When —2 < & < 6, the four saddle points are away from the coordinate axis
(both real and imaginary axis), which is corresponded to Fig. 3(b) and the signature table is shown
in Fig. 4(c). The asymptotics for —2 < £ < 6 could be seen as a specific case of the asymptotics
for —6 < & < —2. For £ > 6, the four saddle points are all distributed on the imaginary axis as
shown in Fig. 3(c) and the signature table is still shown in Fig. 4(c).

4. Asymptotics for £ € R : left field
4.1. Jump matrix factorizations
Now we use factorizations of the jump matrix along the real axis to deform the contours onto

those on which the oscillatory jump on the real axis is traded for exponential decay. This step is
aided by two well known factorizations of the jump matrix V(z) in (2.42):

20t 1 3
V(z)=<(1) e )(r(z)em ‘1)) cef, @
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Fig. 4. Plots of the J0 with different E=x/t: (@) & <—6,(b) —6< E < —2, (¢) & > 6. The black curve is unit circle. In
the purple region, J6 > 0 (|e2”6\ —0ast— 00),and J0 <0 (|e*2”9\ — 0 as t — 00) in the white region. The purple
dotted curve represents J0 = 0.

1 0 N (1 _@ezns
=\ rwe (l—lr(z)l) 0 17|1r<z>|2 , ze€Tl, 4.2)

1=|r(2)I?

where

= (&4,5)U (&, &).
The leftmost term of the factorization can be deformed into C_, the rightmost term can be de-
formed into C, while any central terms remain on the real axis. These deformations are useful

when they deformed the factors into regions in which the corresponding off-diagonal exponential
terms e2"% are decaying as r — 00.

4.2. First transformation: M — M1

Define the function

8(z) =8 = L [rog (1 2 ! W 4.3
@=se s =exp| 5 [rog(1-reP) (o -5 )as | @)
r
Taking v(z) = —%log(l — |r(z)|2), then we can express
8(z) =exp —i/v(s)( ! —i> ds|. 4.4)
s—z 25
r

In the above formulaes, we choose the principal branch of power and logarithm functions.
Proposition 4.1. The function defined by (4.4) admits following properties:

(1) 8(z) is analytical for z € C\T';
(i) 6-(2,8) =84+, &) (1 = Ir@P), zeT;
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(iii). 8(zx)=86"17)=8(—)=68"H7Y;
@iv). 6(00) :=1lim;_ 8(z) = 1. And §(2) is continuous at z =0 with §(0) = 6(oc0) = 1;
(V) 8(2) is uniformly bounded in C \ R

(1—pH'"? <8< —pH ™12, (4.5)

where ||[r]|p~ < p < 1. ‘
(vi) As z— &; along any ray §; + PR with |¢| < 7, we have

18(2) — (z — &)V EDPEED | < el |z — &2, (4.6)
1Bl < % @7)
—pP
1B(z, &) — B}, &) < C”’””‘“| z—&l2, (4.8)
where
v(s)
Bz, &) = ds +€jv(gj)log(z — &) 4.9)
S —Z
r

Proof. Properties of (i), (iv) can be obtained by simple calculation from the definition of §(z).
The jump relation (ii) follows from the Plemelj formulae. As for the property (iii), the symmetry
comes from the symmetry of r(z). We specially point out that the third symmetry follows from
the symmetry of r(z) as well as the following equality

) , 1 1
exp | i ds|=exp|i [ v(s)| — ——)ds|, for zel. (4.10)
s —z s—z 25
r r

For the item (v) and item (vi), the analysis is similar to [12, Lemma 3.1]. O
Furthermore, we can rewrite
8(z,8) = (2 — )" Pexp(iB(z, ). (4.11)
Remark 4.2. We notice that all discrete spectrums 1, € C4+ N{z: |z| = 1} satisfy J0(n,) < 0, all
discrete spectrums 7, € C_ N {z : |z| = 1} satisfy J6(7,) > 0. Owe to this good property, that’s
why we do not classify the discrete spectrum by §(z, £), which is different from the 7'(z) we use

in [35].

Introduce the interpolation functions which can convert the residue conditions (2.45) and
(2.46) into the jump condition. For all poles n; € Z, we define a constant £ as follows

1
h:=—min{min|n; —n;|, min|3In;|¢. 4.12
) {i;ﬁj [n; 77]| jezlﬂhl} ( )
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We can see that the disk D(n;, h) N D(nj, h) =@ fori # j, and D(n;, h) "R = . To be brief,
we define a new path

N
w2 = | J{z € C:2€ DMy, h) or 2 € ID(fn. h)}. 4.13)

n=1

The interpolation function G(z) is introduced by

1 0
ey 2i0m) 1] z€ Dy, h),

Z=1Mn
(4.14)

G(Z) — l _Enez”(i(fm)
0 1

= )5 ZED(ﬁYl’h)’

1 elsewhere.

By using §(z, £) and the interpolation function G (z), the new matrix-valued function M M)
is defined by

MD(x,1;2) =MV (2) = M(2)G(2)8 ()7, (4.15)
which satisfies the following regular RH problem.
RH problem 4.3. Find a 2 x 2 matrix-valued function M m(x, t; z) such that
- MWD (2) is analytic for C\ZD, where =V = 5 U mrole,
-MD @) =MD @0 =MD (—2) =Fz ' MV (z Hon.

- The non-tangential limits Mj(tl)(z) exist for any z € £V and satisfy the jump relation MS)(Z) =
ML VD (2) where

1 —m(S(Z)_2€2”9 1 0 -
(0 1 > (r(z)82(z)e_2i’9 1) » zel

1 0 1 - r@8.°() Q20
r(2)82(2) _oise | 1-r()1? , z€T,
1_|r(z)‘ze 0 1

V(l)(z) — 1 0 (4.16)
( pe2i100m) 52 1) , z€9dD(ny, h) oriented counterclockwise,

Z—Mn

1 6ne2it9(ﬁn)52(z)

0 z—lﬁn ,  z€dD(ny,h) oriented clockwise.

- Asymptotic behavior
MV, 15 =1+0E""), z- oo, (4.17)
MO, 2= +01), z-0. (4.18)
z
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4.3. Second transformation by opening 3 lenses: M) — M®

In this subsection, we make continuous extension for the jump matrix V! (z) to remove the
jump from the real axis in such a way that the new problem takes advantage of the decay of
exp(£2i16) for z ¢ R.

4.3.1. Characteristic lines

The aim of this subsubsection is to denote some characteristic lines which are the jump con-
tours of the RH problem M ® defined below. To avoid these characteristic lines intersect with
discrete spectrum located on the unit circle, we fix a small enough angle 6y which satisfies that
the following three conditions.
- Let the set

3z
Nz —§;

{ZG(C s tanfy <

} (4.19)

do not intersect the set Z, j =2,3for& e Ry;
- The following regions Q2 j, j =2, 3, k = 3, 4 do not intersect discrete spectrums, which implies
that

T(§) = min {o, 7. (4.20)
- Recalling Proposition 3.1, we make
) ~ §1—6
de 0, , de|0, . 4.21
< 2cosYT 2cosY (421)

With these conditions, some characteristic lines are given as follows items (For convenience, see
Fig. 6).

(i) For an angle ¢ satisfies the above conditions (4.19), (4.20) and (4.21), we denote the char-
acteristic lines near saddle points presented by

g +ellU=DTHEDTOR o g,
Yi1= )
e 4 elo-vmecnely oo
& + e_"[(j_l)”"'(_l)j*lq&]RJr, j=1,4,
| (4.22)
g+ e llU=DmHEDTl0ly g 3

Ejg:{
gj+e im0l =14,
Xj3= ,
T g elimrevelg o,
g +ellmrv0lg =14,
4= N o (4.23)
g +ellimr el j=23,
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Fig. 5. There are four stationary phase points &1, ..., §4 with §] = —&4 = 1/& = —1/&3 for £ € R,. Open jump contour
R\ {0} such that red and blue lines don’t intersect the discrete spectrum on the unite circle |z| = 1. Additionally, the blue
“4” implies that 2 5 0ast — 00, on the other side, the red “—” implies that e~ 28 L 0ast — +00.

(ii) Characteristic lines near z = 0 are defined as follows

e?d, j=0T, e ?d, j=0",
NN ey o ERE ey o (4:24)
€l T d, J= 0 y e Hr d, ]J= O .

(iii)) Meanwhile, there exist vertical jumps E;lf), j=1,2,3,4.

The complex plane C is separated by these contours, which is shown in Fig. 5, Fig. 6. Denote

Q= U Qi U U Qo |, Qe =C\L, (4.25)
Jj.k=1,2,3,4 k=1,2
@ .= U =x«|Ul U= |Ul U Eﬁ.lf) Lz @26
Jj.k=1,2,3,4 k=1,2 j=12,3,4

4.3.2. Some estimations for I0(z)
In this subsubsection, we give some estimations for J6(z) in different regions.

Proposition 4.4 (near z =0). For a fixed small angle ¢ which satisfies (4.19), (4.20) and (4.21),
the imaginary part of phase function 6(z) defined by (3.1) has following estimations:

J0(z

J0(z

clsing|/a, as z € Qpx, 4.27)

)=
) < —clsing|/or, as z € oo, (4.28)
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12 : )
Zz(Pr/ ) . =0

4

Fig. 6. Z j; separate complex C into some regions denoted by € j;.

where

£+3

c=c®)>0. oe=3- 1 09

(4.29)

Proof. We present the details for z € Q2+, the others are similar. Taking z =1 ¢'? we can rewrite
the (3.2) as

J0(z) = %F(l)simb [é;‘ — 6c0s(2¢) + (2cos(2¢) + 1)F2(l)] , (4.30)

where F(I) =1+ 1! > 2. Firstly we calculate the critical situation 36(z) = 0. Taking (4.30),
F(l) > 2 as well as sin¢ > 0, we have

£ — 608 (2¢) + [2cos (2¢) + 1] F>(1) = 0. (4.31)

Thus

£+3

FP(h=3——>"" _—q
1+ 2cos(2¢)

> 4. (4.32)

Moreover, by F(I) = /a, we have [> — \/al 4+ 1 = 0. Solving this quadratic equation, we obtain
two roots

:f_ a_4<12=ﬁ+ 06—4.

I
! 2 2

(4.33)

We claim that: J36(z) > 0 as [ < [; (corresponding to z € Q¢+1). It’s easy to check that h(l) :=
12 — Jal + 1 is monotonically increasing on the (y/a//2, +00), while monotonically decreasing
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on the (—00, i/ /2). Since I} < /a/2, h(l) is monotonically decreasing on the (0, /}). Thus we
have h(l) > h(l}) =0 and F(I) > \/a, which implies that

1
J0(z) > Eﬁsin¢ [ — 6c0os(2¢) 4+ (2cos(2¢) + 1)a] = 0. (4.34)
Thus we bring this proof to an end. O

Corollary 4.5. J0(z) has following evaluation for z =1e'® :=ug + iv

J0(z) = cv, for zeQpxq, (4.35)
S0(z) < —cv, for z€ Qyxy, (4.36)
where c = c(§) > 0.
Proposition 4.6 (Near z =&, j =2, 3). For a fixed small angle ¢ (the same in Proposition 4.4)

which satisfies (4.19), (4.20) and (4.21), the imaginary part of phase function 6(z) defined by
(3.1) has following estimations:

8\9(z)<—c<l+lzl_2>v2, zeQy. j=23. k=24 (4.37)

%9(z)>c(1+|z|_2>v2, ceQp. j=23. k=13, (4.38)

where ¢ = c(§) > 0.

Proof. Taking z € Q2,4 as an example, the proof for the other regions is similar. Denoting z =
£ +1e'? := & + usr + iv, we can rewrite (3.2) as

v

2
<e(1+172) [ 434302 + 2 = D=4 + 12~ = 2], @39)

30 =3 (1412072) [£+3 43027 + 1272 = ) = 402(1 + 1217 = 1217

the second step we used v < 5‘;&.

Consider
h(12P) = +3430P + 122 = D =42+ = 1] @40
Taking 7 = |z|? € (£, £}), we obtain that

hr)y=3@+t ' =D -1+t 23—t H+e+3. (4.41)
It is not difficult to verify that 4'(t) < 0 for T € (§7, &), thus
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h(r) <h(E)
=3(B+e7—1) -4 (145* —57) +6+3
&H=1/& 3(£2 2 2 4 2
=3 (g +E—1) -4 (146 —£2) +&+3. (4.42)

Since & is the saddle point, we have 6’(&;) = 0. Using £1&, = 1 again, we can obtain the follow-
ing relation from 6’(&;) = 0 such that

E+3= %;;é). (4.43)
With (4.43), we are lucky enough to find that
3(g+e-1)+5+3=0. (4.44)
Then we obtain
h(t) < —40> (1 eh - g%) . (4.45)

As a consequence,
360(z) < —cv? (1 n |z|—2) (1 - g%) < —cEn? (1 n |z|_2> <0. O (4.46)

Proposition 4.7 (Near z =&, j = 1,4). For a fixed small angle ¢ (the same in Proposition 4.4)
which satisfies (4.19), (4.20) and (4.21), the imaginary part of phase function 0(z) defined by
(3.1) admits following estimations:

J0(z) = cvlfz—§jl, z€Qp, j=14, k=13 (4.47)
J0(z) < —cv|Mz—§&jl, z€Qj, j=1,4, k=24, (4.48)

where ¢ = c(§) > 0.
Proof. The proof is similar to Proposition 4.6. O

4.3.3. Opening 9 lenses
Introduce the following functions: for j = 0%, 1,2,3,4

r(z) —
pj1(@) = pji1(z,§) = TR pj3(2) = —r(z2), (4.49)
=" =) (4.50)
Pj2(Z .—l_lr(z)lz, pja2) :=—r(2). .

Define R®(z) := R@(z, &) by
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200
((1) f”f > 2eQj, j=0%1234
1 0 .
J
R® () = 2010
@ <(1) fﬂi > z€Qj3, j=1,2,3,4
1 0 .
<f’4€_2it0 1) zZ € Qj4, J= 1,2,3,4
1, elsewhere,

where the functions f; are given by the following two propositions.

(4.51)

Proposition 4.8 (Opening lens at z =0). fj : §jk —-C, j= 0%, k = 1,2 are continuous on

ﬁjk, j =0%, k= 1,2 with boundary values:

_ &3 &
1(2)872(2), e(—,o)u<o,—>,
Jot1() = Pirtees ‘ 2 2

0, zZ € 20:&1.

P28 (), ze (§—30> U (0, §—2> :
for2(2) = 2 2

0, Z € Xpto.

fik: J = 0%, k = 1, 2 have following properties:

D fir @IS IP (2D 1 +1217%, zeQp,  j=0%k=1,2.
Moreover

0 fi@I S5 (D [+ 127" zeQp. j=0%k=1,2.
Proof. We give the details for fy+;(z), which can be constructed by

for1(2) = por1(2)872(2)cos(koargz), ko = —.

2¢

Denoting z = le'¥, we have d-derivative d = %e"“’(f)z +il7'9,). Hence

_ ip ]
3 for1(z) = %8;2@ [,/m (1) cos (ko) — }xosin (k09) P0+1(l):| .

Using Cauchy-Schwarz inequality, we have
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1

1po+1 (D] = |po+1() — por1(0)] = / Pl )ds| NI phay Il 20> S1V2, (4.58)
0

Meanwhile, the boundedness of Si(z) is guaranteed by the property (v) of Proposition 4.1. Thus
(4.54) comes true. As for (4.55), we just notice pop+1(l) € L. O

Proposition 4.9 (Opening lens at saddle points). fi : jk — C, j,k=1,2,3, 4 are continuous
on Q]k, Jj. k=1,2,3,4 with boundary values:

fo=1" 5@, | el (4.59)
piEPe 2 PEE) (- g)THE) e wy,

o) = Pj2(2)8% (), | z€l), (4:60)
pENEPE) (- g rewp,

P P38 (), | z€ljs, “6h)
Pjs(éj)efw(g-"’é) (z— éj)izlejv@j) , T€ X3,

o) = Pja()8%(2), | z€lja, 462)
pia(EeXPEE) (z —g)HE) - ew,

where

=1 :=(&1,4+00), hi=Ipn:= <%27§2),

Ly =13 = <S3, %3) Iy =1 = (—00,84), (4.63)
Lz =114 := <52+Sl §1> I3 =Dy = (52,5242_&),
I3 =134 = <S4 & §3> Iy3 = Iyq = <§4, st er §3> . (4.64)

And fik, j,k =1,2,3,4 have following properties:

0 /i@ S 1P R [ +1z—& 172 zeQu, jk=1,2,34, (4.65)
| fir(@)| Ssin® (koarg (z — &;)) + (M2) ™', ze€Qy, jk=1,2,3,4. (4.66)

Moreover, as 7 — 1,

10 k@I S 1Pl — 11, z € Qoa, Qo3 (4.67)
0fik @I S1Pllz+ 11 2 € Qaa, Qas. (4.68)
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Proof. We take fi1(z) and f24(z) as examples to present this proof. The continuous extension
of f11(z) on 1 can be constructed by

f11(2) = pr1(Ee 2 PEE) (7 — £) T2V ED 1 — cos (koarg (z — £1))]
+ P11 (N2)872 (2)cos (koarg (z — &1)) . (4.69)

Where «y = % Denote z = & + lel? = & +u +iv, where [, ¢, u, v € R. Firstly, we have

P (2] = 2R < FEEL < (5i2)~!. Recalling (4.7), we obtain (4.66). Applying § =

Lel? (3 +il7',) to fi1, we have

3 ={p1872@) = puE)e P60 (2 — )7 | heos (ko)
1
+ 58;2(z>p11 (u, £)cos (Ko@) - (4.70)

Recalling (4.8), we get (4.65) at once.
For f>4, taking the same method to f11, we have

324 = [ p2482(@) = pu(@e P9 (2 = )@ | Beos (09)
+ 3920yl §)c0s (ko). @.71)
Finally z near 1, we have ¢ — 0, thus we obtain
1 f24] < | Paglcos(kop) < [Phyllz = 1. 4.72)
Estimation for the other fj; could be given via similar techniques. O
Define the second transformation
MP2):=MP(x,1;2) = MV D)RP (2), (4.73)
which constructs the mixed 3-RH problem as follows

RH problem 4.10. Find a 2 x 2 matrix-valued function M @(x,t; z) such that
- M@ (2) is continuous in C\E®, where £ is defined by (4.26).
- M@ (2) takes continuous boundary values M(iz ) (z) on P with jump relation

MP @) =MP )V (), (4.74)
where
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RP@) g, zeXj, j=0%1,234,
RP@)7 g, ze€Zju j=123.4,
ROz, z€ZTjp. j=0%1,234,

V() = (4.75)
RP@)lg; zeXp, j=1.2,3.4,
R yRP@I 1. zex{?, n=1.23.4
Q? Q2
Jjk Im
- Asymptotic behavior
MP(x, ;) =1+0@""), z— 00, (4.76)
MO 1= 400)., z—0. 4.77)
z
- For z € C, we have 3-derivative equality IM® = MP R where
5o 2i10
<(1) af”f ) zeQj, j=0%1,2,3.4,
1 0 .t
<éfj2€_2”0 1), 7€)y, j=07,1,2,3,4,
IRPD =1 (1 dfpe¥r? : 4.78
o e, ceQp, j=1234, @79
1 0 .
<5fj4€_2”0 1), 2€Qj4, j=1,2,3,4,
0, elsewhere.

Remark 4.11. Notice the boundaries of fji, j = 0%, k =1, 2 defined by (4.52), (4.53), we actu-
ally know that VP (z) = I, for z € Toxg, k=1, 2.

Aiming at solving the mixed 9-RH problem 4.10, we decompose it to a pure RH problem for
MPR) with §RP = 0 as well as a pure d-problem M3 with nonzero R derivatives. This
step can be shown as the following structure

IRP =0—- MPPR
M® = MOy PR ’ (4.79)
GRD £0—> MO = yOyPR ™,

4.4. Analysis on pure RH problem

In this subsection, we mainly focus on the analysis for pure RH problem M%) which
include three parts: global parametrix, local parametrix as well as small norm RH problem.
Noticing that MP® is a RH problem with R = 0, thus, RH conditions for M PR are as
follows.
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RH problem 4.12. Find a 2 x 2 matrix-valued function MP® (x, t; z) such that
- MPR) (2 is analytic in C\X®,
- MPR) (2) takes continuous boundary values MiPR)(z) on =@ with jump relation

MPP ) =M PR v (). (4.80)

- Asymptotic behavior
MPP, 1) =1+0E™", z- o0, 4.81)
MPR (¢ 12 7) = % +O), z-0. (4.82)

Define U (§) as the union set of neighborhood of saddle point &; for j =1, 2, 3, 4.

UE) = | UgEp). with Ug€) = {z:1z— &l <o}, (4.83)

Jj=12,3,4

where

I e 2N . | |
@<§mm{mm{|onn|}n:], r]gl;lllm—nkl, Ej:rlrgryl3y4léjill Ej:rﬁlzfg,ﬂéf"}‘ (4.84)

Remark 4.13. The third and fourth restriction of (4.84) is to remove the singularity z = 0, 1
from local model which will be discussed in Subsection 4.4.2.

Proposition 4.14. For 1 < p < 400, there exists a constant h = h(p) > 0, such that the jump
matrix V® defined in (4.75) admits the following estimation as t — +00

IVE = Irsnvpe) =0 ™), for jk=1,2,34. (4.85)

Proof. We take z € X4\U,(&2) as an example, the other cases can be proved in a similar way.
For z € ¥24\U,(§2), 1 < p < +00, by using (4.75) and (4.66), we have

2iB(62,8) (z — 52)—21'1)(52)6—21‘;

IVE = Lot = P2 E2)e "lLr v (486)

S e Lo pu, @) - (4.87)

For z € X24\U,(£2), we still denote z =& + [l = & +u+iv, [l > o. With the help of Propo-
sition 4.6, we have

—2i —2tpe(14]z172)v?
lle lt0”€p(224\ug@2))5 / e~ 2pe(1+121 )0 4

224\Up (£2)
o0
14?205 et
o

<t lempeie, (4.88)
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where the value of ¢ = c¢(§) above changes from line to line. O

Proposition 4.15. For 1 < p < 400, there exists a constant k' = h'(p) > 0, such that the jump
matrix V? defined in (4.75) admits the following estimate as t — +00

Ve -1 )=O(e—’“’), for j=1,2,3,4. (4.89)

(1/2)
Loz

(1/2)

Proof. We only give the details for z € X

@ _ — _ —2it6
v 1||Lp(25112)) 1(f24 — f1a)e ||L,,(2§1+/2>)

S lle =20 (4.90)
~ Lr(s{/?) '
1
StTrem O 4.91)

4.4.1. Global parametrix: M

The leading order of M (PR is approximated by a global parametrix (denoted by M () with
exponentially decaying on the jump of MP®)(z) (see Proposition 4.14 and Proposition 4.15).
Thus we consider the following RH problem

RH problem 4.16. Find a 2 x 2 matrix-valued function M (x, t; z) which satisfies
- M) (2) is analytical in C\{0}.
- Asymptotic behavior

M@ (x,t;2)=1+0"", z— o0, (4.92)

M@ ) =24001), z-0. (4.93)
Z

Then the following result is standard.

Proposition 4.17. The unique solution of RH problem 4.16 is given by

My =1+ 2. (4.94)
Z

4.4.2. Local parametrix near saddle points: ML€)(z)

The sub-leading contribution stems form the local behavior near critical points &;, j =
1,2, 3, 4. It turns out that the local parametrix (denoted by M€, j =1,2,3, 4 below) can
be constructed in terms of the solution of the well-known Webb (parabolic cylinder) equation.
Denote U, (§;) the open disk of radius ¢ defined by (4.83) around §;, j =1, 2, 3, 4 respectively.
And define the contours TLC) := (Uj x=12,34Z jk) N U (§) (see Fig. 7).

Now we turn to the following localized RH problem.

RH problem 4.18. Find a 2 x 2 matrix-valued function M (LCE) (x, t; z) such that
- MECED(2) is analytical in C\SEC40, where £LCE) := 51O k=1,2,3,4.
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A Imz

Fig. 7. Jump contour T(£C) of mEC Sj)(z), j=1,2,34.

. LC)&; . . .
- MLCE) (2) takes continuous boundary values Mi ¢ g’)(z) on SLCED with jump relation

M @ =MD v i), e s, (4.95)
where
r(‘ff e 2BEE) (; _ £ ) ~2Ejv(E)) L2ith
s H
0 1
1 0
(LC)
r(E) e2iBE8) (, _ £ .\2i€jv(E)) p—2i10 ) zeX;,
VIS (2) = (1 repre P @ g e ] (4.96)
—r(é‘ Ve~ 2iB(&;, E)(Z—E) 2iejv(§)) p2it0 L0
( 1 ) ZEEJ.3 ,
1 0 (LC)
(r(éj)e”ﬂ@f’g)(z _ %-j)Ziejv(Ej)e—Zite 1) s z € 2/,4 .

“MICE) (x 1) =T+ OE™Y), z— oo (Figs. Sand 9).
For z near &;, j =1,2, 3,4, we have

”(éj)

0(z) =0(&;) + @—E)+0(z—§P). &, j=12734 (4.97)

Thus, for z € U, (§;), we define the rescaled variable ¢ by

£(2) = (2t€0" (&) (2= &), 1=1,2,3,4, (4.98)
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(LC) (LC)
Il I

r@&)) efziﬁ(élvé)(z,51)721'1;(51)82”9)
1

1 0 —
<,(gl)eZiﬁ(%‘E)(z,El)2iv($1)672it0 1) N 1-IrEpI2

77777777777777777777777777777777777 Rz

. . . 1 0
_ —2iB(E1.€) (; _ g )2iv(EY) ,2it0 - ; ; .
((1) r§pe (~1 3 e ) & RBELE) (o g 2VED,=2it0 )

1-IrEpP?
(LC) (LC)

=5 X2

Fig. 8. The contour »(LCED and the jump matrix on it.

(LC) (LC)
1

Xy

r®) 2.8, £y) 2V (E2) 2010

— 1 0
, P <r@z)eZiﬂ(Ez,E)(z_52)*21'1/(%2)6—2[19 1)

77777777777777777777777777777777777 Nz

1 0 . . )
. R _ =2iB(&2.8) (, _ £.\2iv(&2) ,2i10
i 1 2:8) (¢ 2
(&) 5 2iPELE) o _ gy) 2V (ED) ~2ird (0 r&)e (1 &) e )

1=Ir(&)I

(Lo (LO)
Zy 3

Fig. 9. The contour »(LC.5) and the jump matrix on it.

which is to match the standard model presented in Appendix A.
And the scaling operator N¢; admits the following mapping

Ng; :Up(§j)) — Uo, j=1,2,3,4, (4.99)
7+, (4.100)

where U) is a neighborhood of ¢ = 0.
Choose the free variable rz; appeared in the Appendix A by

re, =r(&;)e?PEO210C D exp [—ie;v(E))log(2te;0" (£5))]. (4.101)

with the equality |r(&,)|* =|re;|*, j =1,2,3,4.

In the above expression, the complex powers are defined by choosing the branch of the loga-
rithm with 0 < arg¢ < 27 near &1, &3, and the branch of the logarithm with —7 < arg¢ < m near
£, &4. Through this scaling of variable, the jump VC-§/)(z) can be approximated by the jump
of a parabolic cylinder model which is shown in Appendix A.

Remark 4.19. In the expansion (4.97), the higher order term as z — &; could be ignored under
the condition |x/¢| = O(1). Without loss of generality, we take the neighborhood of &; as an
example, we expand
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9//
e(z)=9(sl)+%(z—sl)%m(z—gl){ (4.102)

where 6, = W, k € (0, 1) is the coefficient of remainder.

Owe to the scalihg (4.98), we have the following transformation
Nig—> (N)©) =g (0" ¢ +&), (4.103)
which acts on ¢9?) to obtain
Q210G _ 2it(N) (@) (99 2inben) | he? | iree e @) 28 (4.104)

The first and second term of R.H.S. of (4.104) are used to match parabolic cylinder model. What
we care about is the third term. Since ¢ € Uy, the neighborhood of zero, we can set { =u +iv,
lu] < e, |v| <e. Thus

|62il9¢:(219"(51))_%§3| — |62”9c'(219"(51))_%(Ll+l'v)3|
— exp ((2t0"($1 NN (21'; RO +i300)) - (u+ iu)3))

—exp [—(2:)—% ©" (&))" (m(ec) <3u2v - v3> +3(6,) (;ﬁ — 3uu2))]

—1 as t— +oo,
(4.105)

by which the effects of the higher power could be ignored. The premise of this result is that
NG;) (3u2v — v3) + 3J(6,) (u3 — 3uv2) is finite, which follows from finite &.

As a consequence, a standard local parametrix for M(LC-€1) | j = 1,2, 3, 4 is constructed by

MECED (x 1:2) = M) M PCED (é, (@) = (200" (5)* (2 - a)) . (4.100)

where

1

(21€;0"(£)))”
z—&;

()

MPCED & 5 @) =1+ E-”"(’;lz )+<9(:—2), (4.107)

]
—
M
%)

=,
= <
N~
=&

where 5 and B are defined by (A.24)-(A.26) for j = 1,3, while are defined by

(A.50)-(A.52) for j =2,4.
Remark 4.20. Here we directly calculate MLC¢1)(z), j =1,3 and MLCE)(z), j =2,4, be-
cause the original circular symmetry reduction M(z) = Fz~'M(z~ "o is destroyed in these

local models.
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Now we consider a new RH problem M (LO) (x,t; z), which include the contribution from
MUECE)  j=1,2,3,4.

RH problem 4.21. Find a 2 x 2 matrix-valued function MF€)(z) such that

- MO (2) is analytical off TC).
- MO (2) takes continuous boundary values M(il‘c)(z) on T with jump relation

MOy =M v IO (), e xdO, (4.108)

where VO (2) = V(7).
-MEO(x, 1) =14+ 0z, z— oo

V€O () admits a factorization

-1
VEO@ = (1-wy)  (1+u}). (4.109)
where
— + LC
wy =0, wh=v*o9 1, (4.110)

and the superscript & indicate the analyticity in the positive and negative neighborhood of the
contour respectively.
Recall the Cauchy projection operator C+ on Eﬁc), jk=1,2,3,4

. 1 f(s)
Cj:f(Z) = lim L0 2—
s—>7Z, Zezjk.i Tl Lo s <

ij

ds. @.111)

Define the following operator on Zﬁc), k=1,2,3,4 as follows

Cuy(f) = c_(fwj*k). (4.112)

Then we review some notations as follows

4
wi=Y wy, W= ) =G, 4.113)
k=1 k=1,2,3,4
4 4
i L
w=Yu= Y wp 2EO= |J e ] 54O,

j=1 j.k=1 Jj=12,3,4 Jj.k=1,2,3,4

(4.114)

It is obvious to find that C,, = ijl Cw; = Zj’,k:l Cuyj,- A direct calculation shows that
||wjk||L2(2ﬁc>) = O(t~'/?), which implies that 1 — Cy,, 1 = Cy; and 1 — Cy,, existas 1 — +00.
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Via standard Beals-Coifman theory [3], we know that M “C) can be uniquely shown by

MEO) =T + C(pw), (4.115)

where p € I + L>(Z9) is the solution of the singular integral equation u = I 4+ Cy,(1).
MO (z) could be expressed in terms of the following integral.

1 1—Cy)
Moy L / d=-Cy Iw, (4.116)
2mi s—2z
S(LC)
Proposition 4.22. As t — +o0, for j £k
I1Cw; Cull2gzen = O™, [Cu; Coll Lo (mzory s p2cseery = OG™"). (4.117)

Proof. Thanks to the observation of Varzugin [29], we have

4
—1 —1
1= " CuCuy (1= Cuy) = =Cu) [ 14+ Cu, (1-Cy))" |, (4118)
J#k j=1
—1 —1
1=> (1= Cu)™ Cu;Cuy = 1+Zc —Cy,)” | =Cy). 4119
J#k
The result follows from ||w jx|| =0¢%. o

LC
L2(>:5.k )

The following proposition reveals that the contribution for M) (z) could be separated by
each MLCED (), j=1,2,3,4.

Proposition 4.23. As t — +o00,

-1

_ 1 4 (1—Cu,)” Tw;
/u Z / (=Cu) vy, (4.120)

(LO) J 2<LCe$ )
Proof. Decompose the resolvent (1 — Cyw)~ M as

4
(1 —cw)—11=1+chj(1 — Cuw,)) '+ QPRI, (4.121)
j=1

where
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4
Q=1+ Cy;(1=Cy)~",
j=1
—1

Pi=[1->CuCu(1-Cu) | .
j#k

R:="Cy;Cy, (1 - Cy)™".
j#k

Using Cauchy-Schwarz inequality and Proposition 4.23, we have

'/ QPRIw' < IIQIILZ(E@c,sj))||P|IL2<E(LC,§j)> ”R”Lz(z(wfj)> lwllg2
<t oo
Combining (4.107), the following for M L) (z) proposition follows.

Proposition 4.24. As t — +00, we have

MED () =M@ (2) - MPO(2),
where

. Amat
ze]Aj

MPOQ =1+172) 1
j=1 (2€;0"&N)* (2 —§))

&)
Amat _ ( 0 ﬂ]zj >
o (3]
_1321 0

4.4.3. Error: a small norm RH problem
Define the error matrix M¢"") by

+ou™,

with

MEPRO M@ ()71, e C\U®),

M(err) —
© :M(PR)(Z)M(LC)(Z)I, zeU).

RH conditions for M©"") are as follows.

RH problem 4.25. Find a 2 x 2 matrix-valued function M “"") (z) such that
- M€ s analytical in C\X¢""), where

s .— U ) U (2(2)\U(§)) ;
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Fig. 10. Jump contour of M€ (7).

- M) takes continuous boundary values Mj(f rr) (2) on 2@ and

M_(:rr)(z):Mfrr)(z)v(err)(z), 4.131)

where

M@V M™® ()", 1es\UE),
Ve gy = (4.132)

M HMPOIM® ()™, zedu ).
M =140z, z— oo (Fig. 10).

Taking into account Proposition 4.14 and Proposition 4.15, we can know that V ¢"")(z) expo-
nentially decay to / for z € SO\UE)and z € E;li/z), j=1,2,3,4.Forz € dU (&), M (z) is
bounded, we obtain that

o —1
Ve [ =M )MPO M () —1

_ |M(°°)(1)(M(PC)(1) _ I)M(OO)(Z)_1|

CLD o). (4.133)

According to Beals-Coifman theory, the solution for M€’ can be given by

1 I vern gy — 1
Ml — +— (f + p(s))( (s) )ds, (4.134)
2mi s—2z
Z(err)

where u € Lz(E("”)) is the unique solution of (1 — Cyen)u = Cyenl. And Cyerm:
L%(z@)y) — L2(x() is the Cauchy projection operator on £¢"7):

V(err) -1
(s) )ds.

§—2Z

Cyen (f)(2) = C_f(Ven _ )= limz(m) / S)(
1 L€ s (err)

(4.135)

Existence and uniqueness of x follows from the boundedness of the Cauchy projection operator
C_, which implies

_1
|Cv<f”‘) | < ||C—||L2(2<err))HL2(z(err>)||Verr - ]”LZ(E(@”)) =0(@172). (4.136)
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Moreover,

C err
Myl <-4 (4.137)

Il p2sern <
LR~ I Cyen | ™

Now we present the following proposition, which is helpful for the last asymptotics.

Proposition 4.26. As t — oo, we have

) 4 1 -1
Mfcrr) — t—l/ZZiej (26]9”(5]')) : (1 - 5;2)
j=1

LD -A) AP )
5@1 ﬂ@, (ﬁ@ ﬂ(s,> +0@™), (4.138)
EZ

where M l(err) comes from the asymptotic expansion of M) as 7 — oo
MO =147 'M 4 0. (4.139)

Moreover, the (1, 2)-entry of Ml(e”), denoted by (Ml(e”)) o is given by

4 | _
(M) =723 e (a0 ) (1-857) (ﬂ@f Ezﬂ(s’>+o(f_l)-

j=1
(4.140)
Proof. Recalling (4.134), we know that
1
M = o / I+ () (V) = Dds == I + b + I3, (4.141)
y(err)
where
1
LI =——— Ve (s) —1)ds, 4.142
1 o (Ve (s) —I)ds ( )
au(é)
1
Lh=—— Ve (s) —1I)ds, 4.143
=5 [ e -1 (4.143)
BE\U &)
1
L=—— / w(s) (VT (s) — Ids. (4.144)
2mi

s (err)
Using Proposition 4.14 and Proposition 4.15, we obtain |I;| = o h.
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Using (4.137) and (4.133), we obtain
IS Ml 2 IV =12 St (4.145)

Finally, we deal with I;

h=-7— jﬁM(w)(s)(M”C)(s) )M<°°>(s)*1ds

6
Z 515 ' MO (5) AT (5) M) (5) " ds
= TS :
+0u¢™hH
4 | 7]
(residue theorem) = ¢~ '/2 Ziej (2€;6"(5))) 2 M EHAT M (E) + 06
j=1
4 —
=Y e (260" €) " (1-877) <1+$ )Amat (1 ?)
j=1 J J
+0@¢™h
12 ! . " -1 —\!
= 17123 e (2¢,6"(5))) 2(1—sj )
j=1

L (ﬂ(sj & ) B _ ﬂ@,
§i
Ezﬁ(éj _’Bg j) g, (ﬂg) ﬁ(éj )
+0@™h (4.146)
Summarizing I, I> and I3, we obtain (4.138). (M l(err))lz follows immediately. O
4.5. Analysis on pure d problem
Define
MO () = MO HMPP ()" (4.147)
Then M® satisfies the following  problem.
3-Problem 4.27. Find a 2 x 2 matrix-valued function M® (z) such that
- M (2) is continuous in C and analytic in C\Q.
-MPI@D=1+0E"", z- o0

CForzeC, aM® (z2) = MO Q)W () with WO = MPR ()5 RO )M PR ()"
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Proof. It’s enough to prove the following claims.
M® has no jumps. Indeed, since M@ and M PR take the same jump matrix, we have

3, 1. @3 PR 2)\— 2 PR)\—
MP @ MP @) =M M) P M)
=MIPyO PRy (4.148)

M has no singularity at z = 0. Near z = 0, we have

L1 _ oM PR Tgy
(MPR)=1 T (4.149)
Thus
M® gy (M PRNT
lim M = lim "12(_ — Y2 _ o, (4.150)

M® has no singularities at z = &1. Indeed, as z — +1,

. I s
V(z):(:éE *Efc>, MPR (7) :2(@1)01(;’1’7 J’7’”>m+0(1), (4.151)

for some constants ¢ and y. Thus we have lim,_,+; M® (z) = O(1). O

The solution of d-Problem 4.27 can be solved by the following integral equation

3y w®
M) =1— //M (V)W MZSOWTES) yacs). (4.152)

where A(s) is the Lebesgue measure on C. Denote S be the Cauchy-Green integral operator

1 W(3)
S 10 = // %Z(S)dA(s), 4.153)

then (4.152) can be written as the following operator-valued equation
A-=MP @) =1. (4.154)
To prove the existence of the operator at large time, we present the following proposition.

Proposition 4.28. Consider the operator S defined by (4.153), then we have S : L*°(C) —
L>®(C)NC(C) and

1Sl Loe(C)—sLoo(C) St 5. (4.155)
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Proof. For any f € L*, we have

1 w®
1S e < | fllzoo — // WOy as). 4.156)
b4 ) ls —z|

Recalling the definition W = MR (2)0RP (2)(M PR (z))~! and 9R?, we know that
W3 (z) =0 for z € C\Q. Besides, we only take into account that matrix-valued functions have
support in sector €2 ;. Based on these conditions, what we need to do is to control the bounded-

ness of the integral ff(C |WG)(S)‘dA(s) forzeQj, j= 0%,1,2,3,4, k=1,2,3,4. We present

. ls—zl . -
details for z € Q¢+1, 7 € £224 and z € 1, the proofs for the rest regions are similar.

Since detM PR (z) =1 —z72 and M“DR)(z)_1 =1 -z 1o (MPR) s, we have

W ()] < IMPR ()21 = s727HaRP (5)]. (4.157)

Next we estimate M (PR as follows

IMPRE) S T4 S e/ 4151712 141512 = 1517 T4 152 = 117 (s). (@.158)

Since z =1 € Qy4, we have

o), ze€Qo+, 1,

= (4.159)
| <S>1|, Z € Q4.
P

Is|2(s)2  (s)?
1—s2] |1 —s2|

For z € Q¢+ and 211, the estimations are similar to [12]. However, for z € €294, the singular-
ities at z = =1 should be treated in a more delicate way. To some extent, how to deal with the
singularity points plays a core role in our analysis.

Introduce an inequality which plays an vital role in our analysis. Making s = zo + le/? =
zo+tu+iv,z=x+iy,u,v,x,y >0, we have

Qe

_9
1 _\272
< / 1+<“+170x> (0 — y)~du
S = 2lLa(v,00) v—y
N
4 1/q
oyt /|:1 <u+zo—x>:| d<u+zo—x>
v—=Yy v—Yy
+
g>1
S o=yl (4.160)

For z € Qy+;, we make z=x + iy, s =04 u + iv. Thanks to (4.159), we have

(3) 2it0 2136
_/ WOy <t // |8f0+1e |dA()_ / MM@) (4.161)
Z

T Is —z|
Qo+ Q0+| Qo+1
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Recalling Proposition 4.8, we can divide the integral into two parts

1 5 =230
—/ %dA(s)§h+lz, (4.162)
T |s — z|
Q0+1
where
—2t360 —2130
1]=/ |p0*1|S( Sle AW, 12_/ 's' Bl dAG). (4.163)
Q0+1 Q0+1

Notice that 2y+; is a bounded area, 0 < x,u <& /2and 0 < y,v < Szt%d) (< %2). Thus

Cor 4.5 |phiil
I < 0T ety gy dy
Is —zl

f,/ ||P6+ 2w e "Vdy
S —Z L2(R ) ! R+)
/|U | 1/2 —ctvdv
< t—%. (4.164)
Next, we introduce the following inequality for p > 2
+o00 1/p
_1 —p/2
H|s| 2 = / (\/uz—i-vz) du
LP (v,400)
v
1
“+o00 P
Pty / 7P .1 u~
v
1 1
<y 2ts, (4.165)
By Holder inequality with 1/p 4+ 1/g =1
1 - -
B [l] s Pl e
R, L1(R4)
S_, |U— |1/q 1 +p€ Ctvdv
Ry
<171 (4.166)
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For z € Qq+, k =1, 2, we can conclude that ||S|| poo(c)—LoC) St 2
For z € 211, we make z =x + iy, s =& + u + iv. Thanks to (4.159), we have

w® 3 2136
//I (S)Id As) <L //I fnle dAGs), 4.167)
Qn
Recalling Proposition 4.9, we still divide the integral into two parts
! (s)]e—2130 g — 3,236
I =//%dA(s), 14=/ %d%). 4.168)
s—z -
Qn
For I3, we use Proposition 4.7
oo o0
/ efctv(mxfél)
Is= / / Pnle T
/ s —zl
0 g
o0 00 / ctou
<//|p“|e dudv
~ s —z|
0O v
7 1
5/ e’ ||P11||L2 + — dv
(v,+00) S —Z Lz(v,-i-oo)
(4.160) s 5
< / eTHY |y — y| TV 2q0 <74, (4.169)
0
For 14, we have
o
Ls [ s =gl
Cls—zl
0 v
+00
e’ s &7
0/ L"(R+) LPR+)
4.170)

y o+

i1 1 —eto?
/+/ v I — y Vel gy,
0y

For the first integral, we have
96



T. Xu, Z. Zhang and E. Fan Journal of Differential Equations 372 (2023) 55-122

1

y
i1 2 2,2
/U 2+p|v_y|1/q—le—ctv dl}:/ﬁe_ay w wl/p—1/2|1_w|1/q—1
0 0

ISE

<t (4.171)

For the second integral, taking v = y + w, we have

+o00 +00
/}F“*v%_av—yﬂm‘wv:L/e4@+way+uoup4”w”*4dw

y

—ctw? _ _
e—ctw? 1/ p=1/2 1/a=1 4,

e T dw <1 (4.172)

Forz e Qji, j=1,4,k=1,2,3,4, we can conclude that || S| ooy Loo(C) S 1.

For z € 924, we make z=x +1iy, s =& + u +iv. Since 274 is a bounded domain, we find
that 0 <u < 8582 0 <y < &= Sz)tandb (< & ‘EZ) Owing to (4.159), we have

3) —2it6 2136
l/ MdA()<n/ (s)|3f24e | dAGs) =+ // |S|8f24|e dAG). (4173)

T ls —z| s —zlls— 1] zlls =1
Q04 Qo4

Furthermore,

1 5 2136
_/fﬂlﬁﬁ_ﬂmggg+k, (4.174)
T ls —zlls — 1]
Qo4
where
1 3 236
_ _// (510 f24le X[éz,l>(|s|)dA(S), (4.175)
b Is —zlls — 1
Q04
(519 foa|e®™0 x [ ﬂ)(lsl)
// V2 dA(s), (4.176)
Is —zlls — 1]
Q04

where (g, 1)(Is]) + )([ 51%52)(|S|) is the partition of unity.

= O(1). Recalling Proposition 4.9,

We consider [5 firstly. Since |s| € [&2,
we have
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Is <1V +12, (4.177)
where
! (s)]e2130 5 —%eme
M :/ %dfx(s), 12 = // %dm). (4.178)
s—z s—z
Q4 Qo4
Proposition 4.6 implies that
+00 +00 ,
15(1) g / |p24(s)|e—Cl(1+|S|_2)U2dudv
ls —z|
fang
2
S / ||Pé4||L2(R+)€ “dy
§—Z LZ(R+)
Ry
y o+
S /+ / lv— yl’ée*‘”zdv. (4.179)
0 y

Then

y y
/(y - v)féeﬂ”zdt} < /(y - v)févf%dv 1%
0 0

FSE

<t (4.180)

—1/4

where we use e * Sz . Setting w = v — y, we obtain

+00 400
/(v—y)%e%tvzdv: / w2 WY gy < ey’ (4.181)
y 0

Thus 15(1) < t~1/4 We turn to estimate 15(2). For p > 2, the similar analysis to (4.166) implies

that
+o00
1 1 L2
1 < / s - &217% gy
/ S —ZlLa®y) LP(Ry)
+o00
1,1
5/v_7+7|v—y|1/q_le_m)2dv
0
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y +
1 et
/+/ v I v — y|Ya4= e gy, (4.182)
0 y

The analysis for 15(1) can be applied to bound the two integrals above.

y y
14 141 . 1 1
/(y—v)q Y 2+Pef‘“’2dv§fZ /(y—v)fidv
0

<, (4.183)
and
+00 +0
/ A v —y|V1 e gy < / w2e WY gy < et (4.184)
y 0

Next we consider Ig. Since |s| € [1, %), we have (s) < c(§) for & € Rp. The singularity
at z =1 could be balanced by (4.67),

/ 2136
<c(e>i//—'p2“'e dA(s)
T ls —z|

Qo4
+00 400

FZ . —2),2

5/ ie ct(14]s|™")v dudv
ls —z|

0 o

/ —ctv?
||P24||L2(R+)e “dv

§—Z LZ(R+)

|U_y| LlU dU

(similar to 1{") < f‘/“. (4.185)

From estimations for /5 and /g, we conclude that || S| 200y zoo(C) St~ i for 2€Qj, j=2,3,

k=1,2,3,4. Based on the three cases we discuss, ||S||zC)—ro@©) St~ i ast— 00. O

Following from Proposition 4.28, (1 — S)~! exists as r — oc. Finally, we turn to evaluate
M® as t — co. Make the asymptotic expansion as follows.

MO =1+27"MP (x, 1)+ Oz, as z— oo, (4.186)
where
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MP (x, 1) = % // MO ()W (s)d As). (4.187)
C

To recover the solution of defocusing mKdV (1.1), we shall discuss the asymptotic behavior of
(3)
M7 (x,1).

Proposition 4.29. As t — oo for £ e Ry,
MO (x, 0] <1 (4.188)

Proof. Noticing the boundedness of M (PR) and M, we have

— -1
|Mf3)|<//'M<3>M<PR>aR<2> (M0 ‘dA(s)

|s

Qi
5// (S)” ‘5fjkei2i19‘dA(s)
Qjk

|s

— // (i)u 13 x| eF30d A(s) (4.189)
Qi

Similar to the proof of Proposition 4.28, we only take into account that matrix-valued
functions have support in the sector ;. What we need to do is to evaluate the integral
Na,, 52 13 fik| eF2N0dACs) for z € Qjx, j=0%,1,2,3,4, k =1,2,3,4. We exhibit details
for z € Qp+1, z € Q11 and z € Q4. We point out that the analysis for z € Q4 is a bit different
from z € Qg+, 211, because we should deal with the singularity at z = 1 as what we do in the
proof of Proposition 4.28.

For z € Q¢+, wemake z = x+1iy,s =u-+iv whichsatisfy 0 < x,u < £/2,0 <y, v < SZ‘%‘P
(< %2). Owe to (4.159), (s)/|s — 1| = O(1) for z € Qg+. And we can divide the integral into two
parts

// 19 for1()| e A AGs) S I + D, (4.190)
Qo+
where
I = / |Ph () e 20 d A(s), (4.191)
Q20+
L= // 151722 d A(s). (4.192)
Q0+1

Since || p(’)+] |;2 is bounded, we bound /; by Cauchy-Schwarz inequality

100



T. Xu, Z. Zhang and E. Fan Journal of Differential Equations 372 (2023) 55-122

1] < // | Pl le >V d As)

S0+
e e 12
—4
< [ i | [ etra]|
0 v
+00
)
< [ vze *dv
0
| +00
R / w2e 21 gy SZ_%.
0
For I, we use Holder inequality and (4.165) to obtain
ftang £)2 1/q

2
_1 iy
|| < / Ms1™2lLrw.6/2) /e 2e1qv gy dv
0

v

+00
1 1 1
—5+ . - —2ctv
5/1} 2T Pyde dv
0
1 1 T
,+,=] 1
= /v?efzc’”dv
0
3
<t72.

_ 3)| < -3
For z € Qo+, k= 1,2, we conclude that |[M ™| S172.

For z € @1y, (s)/|s — 1| =O(1). And we make z =x +iy,s =& +u+iv.

// |3 f11()| e 2 dA(s) S I+ I,

Q

where

13:/ 1] ()]e 2 dA(s),
Q

L= // Is — &1 120 d ACs).

Qy

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)

With the help of Proposition 4.7, we can bound I3, I4. Using Cauchy-Schwarz inequality,
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|I3|</ |pql(s)|e—2tv(ms—§l)dA(s)

Qq
= / |phy (s)le 2" d A(s)
Q
+0oo +o0 3
red / —4dtuv
< 1211 G 22 v+, 00) e du] dv
0 v
+o00
1 1 3
Sff/vﬁe’z’”zst’? (4.198)
0

As for 14, we take the advantage of Holder inequality and (4.165) again

1
+o0 +o00 q
1.1 _
v 2ty /e 2auw gy | do

v

4] <

11 L,
< [ vt (gru)T1e TV d
e 2
< i /v2/p—3/2e—2tv dv
0

<1, (4.199)

where we use the substitution w = ¢!/2y. For z € Qjr, j=1,4,k=1,2,3,4, we can conclude
that [MP] <11,

For z € Q4, we make z = x + iy, s = & + u + iv which satisfy 0 < u <
8 8 ang (< 852).

—51;‘52, O<v<

// |0 f24(s)| P d A(s) S 15 + I, (4.200)
Q04
where
1 5 2036
15:_// (519 fagle X[Sz,l)(|5|)dA(s), 4.201)
T ls — 1|
Q04
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| s>|5f24|e2’*“9x[1,ﬁ)(|s|>
Io= — // V2 dA(s), (4.202)
T ls — 1|

Qo4

and x[s,, 1) (Is]) + X[ 6-6 gz (|s]) is the partition of unity.

Notice (s)/|s — 1| = (9(1) for |s| € [£2, 1). Combining Proposition 4.9, we divide I5 into two
parts

I <1V + 12, (4.203)
where
JA / | Pha ()]0 d A(s), (4.204)
Qo4
? = / Is — &2 72204 A(s). (4.205)
Qo4

With the help of Proposition 4.6, we can bound 15(1), 15(2). We bound 15(1) by Cauchy-Schwarz
inequality

. 24,2
D)< // |Pha()]e20HE 2 g A )

Q04

< / |Pha($) e 2T dA(s)

Q04
- _ 172
slzéztanq) 21252
< I Pag ()l = e dqu | dv
= W2 (046, 21572)
0 v
+o00
1 2
g/viefhtv dv
0
L1 +00
=t4p2 _3 4
YEEUT /wze 2w dw
0
_3
<17a (4.206)

For 15(2), the Holder inequality and (4.165) are used to obtain
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1
Elgiztan(p 51;52 /4
2 _1 —2ct 2
121 [ el as | [ e a
0 v

~

+00
_li1 1 2
</v 2+I,vqe—261v dv
0

+

1.1
iy

+00

=1 1 2
/viefzcw dv
0

EN[)

NI (4.207)
We finally deal with . Thanks to (4.67), the singularity at z = 1 can be balanced. Additionally,

for |s| € [1, 5122>, (s) < c(&). As a consequence,

|l6] < c(8) // | phale® 0 d A(s)

Q04
+00 +00
. —2y,2
g/ /|pé4|e—cl(l+‘s‘ v dudv
+0oo +oo 3
2
< / ||Pé4||L2(R+) /e et gy | dv
0 v
+o00
1 2
< / vIie~ MV gy <734, (4.208)

0
Summarizing the estimations for /5 and I, we conclude that |M 1(3)| < =1 for 2€Qjk, j=2,3,
k=1,2,3,4.
. G e m3 3 3 _ 3

In a conclusion, |[M;”| St72 41734172 St 4ast— oo, O
4.6. Proof of Theorem 1.3(a)

Reviewing the transformation (4.15), (4.73), (4.129) and (4.147):

MDY = MGS®3, M — M(I)RQ), M = M(Z)(M(PR))*l’ MPR — M(err)M(oo)’

(4.209)
we have

M@ =MODM MO DRD () ') PG, zeC\UE).  (4.210)
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Taking z — oo out Q(R® =1,G(z) =), we obtain
M@= (147 M ) (147 ) (147 M )
x (1—z*15103+---), “211)
thus
My =M™+ M + M —50s. 4.212)

Using the formulae (2.49), we have
g, 1) = —i (Ml“"’))12 —i (Mf””)lz e (t—%) . (4.213)
Combining Proposition 4.17 and Proposition 4.26, Theorem 1.3(a) follows.
5. Asymptotics for § € R g: right field
5.1. First transformation: M — MM
By the Fig. 4(c), the jump factorization

1 O 203 1 _meZirG
V@O ={ e | )(1-1r@P)" () TEF ), cex

1-|r@P?

plays a key role in our analysis. Therefore, we choose

1
5(z) 1= 8(z, &) = exp —%/log<]—|r(s)|2) ds | . (5.1)

z

§—2Z

Remark 5.1. The difference between the §(z) defined by (4.4) and the §(z) defined by (5.1) is
the integral interval. The interval of the former is I" := (—o00, &) U (&3, 0) U (0, &) U (&1, +00),
however, the latter is X.

Define

MDY (2) = M(2)G(2)8(2)*, (5.2)
with
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W T
0 ¢"61 . 2€ D, h),
G(z) = 1 0 ~ (5.3)
__Z=n 1] z€ Dy, h),
Z,e2t00in)
1 elsewhere.
The jump matrix VI (z) is as follows
1 0 1 - (2872 (2) Q2it0
r()82() _2ise | 1-|r(2)|? , ZEX,
—Ir@)P 0 1
1 ——
vi(z) = (O Cn52€1‘2”9(’7”) ) , 7€ 3D, h) oriented counterclockwise,  (5.4)
1 0 ~ ) )
2=l 1] %€ dD(ny, h) oriented clockwise.
En(ng(Z)eZitQ(ﬁn)

The asymptotic behavior of M1 is the same as the former section.

5.2. Opening 9 lenses: MV — M@
Find a small sufficiently angle ¢ : ¢ < 6y

Q1 ={ze€eC:0<argz < ¢},

Q={z€eC:—nm <argz < —m + ¢},

Some paths are denoted by

E] = €i¢R+,

Ty =e TR,

with the left-to-right oriented boundaries of

and define a new region 2 =U;_1 2342, where

Q={zeC:m—¢p<argz <}, (5.5

Q={zeC:—¢p <argz<0}. (5.6)

Y= TR, (5.7)

, Ty=e "Ry, (5.8)
Q, see Fig. 11.

Proposition 5.2. For £ € Ry, z =1e'?, and F(l) =1 + 17!, the phase function 6(z) defined by

(3.1) satisfies

1
30@) = SFDIsingllg + F()], z€Q;, j=12,

Sé(z)é—%F(Z)|sin¢|[$+F2(l)], 1e€Qj, j=34

(5.9)

(5.10)

Proof. We give the details for z € 2, the proof for the other regions is similar. Recalling (4.30),

we have
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923 1 @

Q; - 0 D Qg
23 B 4

%)

Nz

Fig. 11. For £ € Rp, there are no phase points on the jump contour. The white regions imply that %19 5 0, however,

the yellow regions imply that e=2//¢ — 0.

36(2) = %F(l)sinqﬁ [(2F2(l) - 6) cos (2¢) + & + Fz(l)]

FO>2 |
> 5F(l)siﬂ¢[$+F2(l)]>0. 0 .11

We choose R (z) as

. ,2it0

RP(7) = ( 1 0

. (5.12)
fje—Zit0 1) ZGQJ‘, .]2374’

1, elsewhere,

where f; is given by the following proposition.

Proposition 5.3 (Opening lens at z =0 for § e Rg). fj: §j — C, j=1,2,3,4 are continuous
on §j with boundary values:

r()

— _572(2), z€eR,
fim=31-lr@P " (5.13)
0, VS Ej, ] = 1, 2,
A z€R,
fi@m=11-1r@l (5.14)
0, zex;, j=3.4

And f;, j =1,2,3,4 have following estimation:
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10fj ()] <elz| 72 el (D] +ep(lzh,  j=1,2.34, (5.15)

where ¢ € C°(R, [0, 1]) is a cutoff function with small support near 1.
Moreover

0fi@I<clz—1], zeQ;, j=1.4, (5.16)
0fi@)|<clz+1], zeQ;, j=2.3. (5.17)

Proof. The proof is an analogue of [35, Proposition 5.5] or [10, Lemma 6.5]. A sketch proof for
/1 is exhibited as follows. By r(z) — Fi as z — 1, we know that |r(z)| — 1 as z — £1. This
implies that fj(z) is singular at z = 1. However, the singular behavior is exactly balanced by the
factor 82(z). With the help of (2.19)-(2.21), we have

r2) b (a@) \’ Jb(z)<a(z) )2
) = , 5.18
|r<z>|2+() a(z) <6+<z>) Ja(2) \54(2) ©-18)

where J,(z) = det(P4 1, P—2), Jp(z) = det(P— 1, P+.1). It’s not difficult to know that the de-
nominator of each factor in the r.h.s. of (5.18) is nonzero and analytic in €21, with a well defined
nonzero limit on d€2;. Notice also that in €2; away from the point z = 1 the factors in the Lh.s.
of (5.18) are well behaved.

We introduce the cutoff functions xg, x1 € Cf)’o (R, [0, 1]) with small support near z =0 and
z = 1 respectively, such that for any sufficiently small s, xo(s) = x1(s + 1) = 1. Additionally, we
impose the condition x1(s) = s Hto preserve symmetry. Then we can rewrite the function

fi) inRy as fi(2) = £ @ + £ (2), where

r@)
—lr@)P?

2
520, @)= x()Jb(Z)<“(Z)>. (5.19)

(D — (1 —
fi' =01 Xl()) Ja(z) \0+(2)

The aim of (5.19) is to balance the effect raised by the singularity z =1 due to |r(1)| = 1. Fix a
small kg > 0, we extend fl(l)(z) and fl(z) (z) in 21 by

r(|z]) 5
1—|r(lzDI?

P = h(|z|)g(z)cos(/<argz)+ﬁxo <%)h/(|z|)g(z)sin(/cargz), (5.21)

) ==zl ~2(z)cos (kargz) , (5.20)

where

T NG _(a@Y
K= gar M= @7 g(z).—<8(z)>- (5.22)

Notice that the definition of f preserves the symmetry fi(s) = — f1(5~1).
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Firstly we bound the 9 fl(l).

0" (@)=—

5.23
8@ 1=Irzhl? 82(2) 1—|r(lzDI 629

dx1(12D rzDeos(rargs) | 1 xieh 5 (r(|z|)cos(xargz)>
We know that 1 — Ir(z)l2 >c¢ > 0as z € supp(l — x1(|z])) and 8§72(2) is bqunded asze QN
supp(1 — x1(z])). Taking z = le'” := u + iv, we still have the equality 8 = %(8; + il_la,,) and
apply it to the first term of (5.23)

e x{rcos(ky)
282(z)(1 = [r(lzD1?)

_ x1(1zD) r(IzDeos(xargz)
82(2)  1=1Ir(zDP

S ez (5.24)

for a appropriate ¢ € C;°(R, [0, 1]) with a small support near 1 and with ¢ = 1 on suppy;. As
r(0)=0and r(z) € H'(R) it follows that |~ (|z])| < |z|'/?||r/|| 2 (r). We have

1—xa(z) = (r(zDeos(kargz) \ | _ |r(z)|< / B i
2(2) 8( PPENE >N|r (z)|+—IZI <P @)+ |z 2. (5.25)

So we obtain that
AV @IS ez +1F @ + 12177 526)

Next we bound 9 f1(2)’

5@ = %eivg(z) |:h’cos(/<y) (1 — %o ( Y )) 3 iK}ll(l)sin(Ky)

K0

+ L an ) sintey) xo ( Y ) + W Wsintey)xg ( Y )] (5.27)
K KKQ

Ko Ko
in which g(z) is bounded, ¢ € L"2(R) and ¢’ € W11(R). So we claim that E_)fl(z) @) S ez

fora ¢ € C°(R, [0, 1]) with a small support near 1, thus yielding (5.15).
Finally, as z — 1, we have

13.£2 ()] = O(y) (5.28)
from which (5.16) follows immediately. O

We now use R® to define transformation M® = M1 R which help us set up the follow-
ing mixed 0-RH problem for & € Rg:

RH problem 5.4. Find a 2 x 2 matrix-valued function M @ (2) such that
- M(z)(z) is continuous in (C\Z(z), where $(? = ypole (Uj=1,2,3,4%;) (see Fig. 11).
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- MD(2) takes continuous boundary values Mf ) (z) on =@ with Jjump relation
MP @) =MP)v? @), (5.29)

where V@ =1 forze ¥;,j=1,2,3,4.
- Asymptotic behavior

MPx,t;2)=1+0E"", 7z o0, (5.30)

MO0, 1;20=2+00), z-0. (5.31)
Z

- For 7 € C, we have 3-derivative equality

IMPD =MPIR?, (5.32)
where
a . ,2it0
(éaﬂf ) ceQ; j=12
IR = 1 0 . (5.33)
(5fj62it9 1) Zer’ ]:3’49
0, elsewhere.

5.3. Analysis on pure 3 problem

The error order mainly comes from the d-problem for & € R g, which is different from the pre-
vious Section 4. We focus our insights on the estimates for the Cauchy-Green operator S defined

by (4.153) and M 53) (x, t) defined by (4.187). Then we have the following two propositions.

Proposition 5.5. Consider the operator S defined in (4.153), then we have S : L°(C) —
L®(C)NCY%C) and

181l Loe(Cy— Loy S 172 (5.34)
Proof. The proof is an analogue of Proposition 4.28. O
Proposition 5.6. As t — oo for & € Ry,
MO, St as 1 o0 (5.35)

Proof. We present the details for z € Q2. By the standard procedure, as Proposition 4.29, we
have

MO e, 0 S+ b+ I, (5.36)
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where
5 —2t36
2 :// ()19 file ]X[O‘l)(|s|)dA(s), (5.37)
5 —
Q)
5 —2130
L= // (s)19 f1le IX“’Z)US')dA(s), (5.38)
5 —
Q)
é —2t36
132// (s)10 file )1([2,+oo)(|5|)dA(S). (5.39)
5§ —
Q)
For the term with x[2, 10)(|s]) the factor (s)|s — 1I"'=0(1), and fixinga p>2,q € (1,2) we

obtain the superabound for I3
B R
s [ [ si+ psh + 1517425 e IsDdAG)
< —ctuv —ctuv —-1/2 d
~ lle ”Lz(max{v,l/«/i},oo) + lle ”Lz(max{v,l/ﬁ},oo)”'sl |24 v,00)dV

Ry

< /e_cm <(ZU)—1/2+t—l/pv—1/P+1/q—1/2) dv <1l (5.40)

~

Ry

Fors € [0, 2), (s) <5, soit could be omitted from the remaining estimates. For the x[1,2)(|s]), we
use (5.15) to obtain that I, < +~1 at once. For the x10,1)(Is]), the changes of variables w = 77!

and r(s) = —r(5~!) imply that

I =//|éf1|e—2f*9<w)|w — 1™ Xp1cal(lwhw| ™ dAGs) S (5.41)
Q)

Finally, we get the desired estimate. O
5.4. Proof of Theorem 1.3(c)
Similar to the Subsection 4.6,
M) =MD MPRD (@) '8() ", (5.42)

for z outside Q.
Furthermore, we obtain

My =M™ + MP — 503, (5.43)
which yields Theorem 1.3(c) by using the formulae (2.49).
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Appendix A. Parabolic cylinder model near &;, j =1,2,3,4
This appendix is based on the methods developed by A. Its’ fundamental work [17].
A.l. Local model near&;, j=1,3
We take &; as an example to present this standard model.
RH problem A.1. Find a matrix-valued function M(PC’ET)@) = M(PC’S‘)(g“; &) such that
- MPCE) (¢ &) is analytical in C\EP¢ with P¢ = {Re’¢} U {]Re’(”_‘”)} shown in Fig. A.1.
- MPCED has continuous boundary values Mfc’&) on XP¢ and

M@ =M ), cexr, (A

where

R :
Tl |, ¢ eRyet,
0 1

g—iv&3e#53 ( r!] (1)> , Ce R+e(2n—¢)i’

VPe) = 1—|re, |2 (A.2)
;—zvégeTm (1) _Fl ) , Ce R+e(ﬂ+¢)i’
TSN ,
é-*iVU3e{T‘T3 r: (1)> , Ce R_l_e(ﬂ*d))l,
1
with v = v(&y).
- Asymptotic behavior:
MPEE O =1 4 MPC 1L 0@ ), ¢ - oo (A.3)

The RHP A.1 has an explicit solution, which can be expressed in terms of Webber equation

(% + (% - % +a))D,4(z) = 0. Taking the transformation

MPCE) =y )Pgirme i, (A4)
where
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R, e(r—0)i R, et

arg¢ € (0,2m)

R+e(n+¢)i R+e(2”7¢)i

Fig. A.1. The contour %7€ for the case of &, j=13.

T
=gy * ), arg¢ € (0, 9),
0 1
1 0
] ’lsl > 1] argge Q2m —¢,2m),
Zire,
PE) = 1 0 (A.5)
<_r$] 1)’ arg{e(ﬂ-qﬁ,f[),
(3 ). meewmnsn
I, else.

The function ¢ satisfies the following RH conditions.

RH problem A.2. Find a 2 x 2 matrix-valued function () such that
- Y is analytical in C\R;
- Due to the branch cut along R4, V¥ () takes continuous boundary values Y+ on R and

YO =y-VY, CeR, (A.6)
where
2 -
vV(e) = ( P=lrg ™ =7 ) . A7)
re 1
- Asymptotic behavior:
U= Vo500 (1 +mMPCE -1y 0(;—2)) . as ¢ — o0 (A.8)

Differentiating (A.6) with respect to ¢, and combining %03 Yy = %03 V_VV, we obtain

dy _i¢ _(d¥ i v
<d§_ 203¢>+_<d§ 2031/f)_v. (A.9)
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Notice that detV¥ = 1, thus we have detyr, = dety/_. Moreover, we know that detyr is holomor-

phic in C by Painlevé analytic continuation theorem. It follows that 1 ! exists and is bounded.
The matrix function (% — —O’ w) ¥ ~! has no jump along the real axis and is an entire function

with respect to ¢. Combining (A.4), we can directly calculate that

dy _i¢ L | aMTEE ey iV pcen) !
(d;“ 203‘/’>¢ _[ dc M : (M )

n % I:M(PC,‘;'l)’ 03] (M(PC’S”>_1 ) (A.10)

The first term in the R.H.S. of (A.10) tends to zero as { — co. We use MPCE)(2) =1 +

M EPC’E])g’l + O(¢7?) as well as Liouville theorem to obtain that there exists a constant matrix
B such that

0 IB(Si) _prar L [M(PC &) ] 0 —i[MfPC,Sl)]lz Al
ﬂ@l) 0 2 [M(PC 51)] 0 ’

which implies that [MI(PC’E])]Q ﬂgl), MI(PC’S])]ZI = —iﬁg'). Using Liouville theorem
again, we have

(% -= w) By, (A.12)
Rewrite the above equality to the following ODE systems
d;/’;‘ ~ Sy =, (A.13)
T+ Sva = v (A.14)
as well as
2 %w = 85y, (A15)
W v = v (A.16)
From (A.13) to (A.16), we solve that
d;?z” + (—; - BB = df,‘,f? (345 - - BB ) m =0,
(A.17)
d;;ﬂzu N <_12 ﬂgl)ﬂ@l)> iz =0, d;;ﬁzzz N <2 ﬂgnﬂ@i)) Yry =0,
(A.18)
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The Webber equation is

"+ l—iJra =0 (A.19)
y 272 y=0. :

The parabolic cylinder functions D,(z), Dy(—z), D—_4—1(iz), D_4—1(—iz) all satisfy (A.19) and
are entire Ya. The large z behavior of D,(z) can be uniquely given by the following formulaes.

2

z 3
e a (1+(9(z_2)), jargz| < =,

4
2 V2T 2 b4 5w
a,—< -2y\ _ iaw —a—1,z°/4 -2 .l dad
- e 4(1+(9(z )) F(—a)e b4 e (l—l—O(z )), g A<
a\Z) =
2 V2 .
e T (1 + O(Z—Z)) _ rz)e—mﬂz—a—lezzﬂ (1 + O(Z—Z)) ,

S5 T
— — < ar < ——.
g U=y

We set v = ﬂg')ﬂg'). For 11, 3¢ > 0, we introduce a new variable n = ;e_%, and the first
equation of (A.17) becomes

————iv) Y =0. (A.20)

For { e Cy, 0 < Arge <m, =% < Argn < 37”. We have 11 = e%v(SI)D_iU(SI)(e’%"{) ~

;“i”eﬂz, which corresponds to the (1, 1)-entry of (A.8).
To limit the length of paper, we present the other results for i below without delicate calcu-
lation. The unique solution to RH problem A.2 is

when ¢ € C,
s _; i _ 3 i _3mi
¥ () eV EVD e (€T 510) l,;%)e O D167 0)
¢)= ‘ (e i S o,
_l/;(—ai’))e“(”@‘) DD ive-1(e”40) e” 3 EV D) (e T i)
12
(A21)
when ¢ € C_,
TvEnp . ~3; v .~ T wE)+) . I
e —ivgn (e #E) e € ivEn-1(e 4 %)
Y() = i S o _ 5w 21 1 T
_l;<(—§‘>)€“”@” DD ivey-1(e740) eV E) Dy (e7ATE)
12
(A.22)

Which is similar to [24, Appendix C.3].
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From (A.6), we know that (y_) "'y, = V¥ and

re =Y n¥y21 — Y- 21¥4 11

)
51 _Sm;.. e A i
=e "D G eneF i) —— ﬂ@) |:3;(D—w(sl)(€ o)) - —D—w(gl)(é’ T C):|

5711)(&'1)

—7 i
—eVEVp_ ivg (e ey /3@') 0 (D_jy(g) (e 45))— D—w(gl)(e 4§):|

ez”(Sl) . .
B Wr( —iven (e 1), Dojug (e 4’4))

eTVE) g ¥

: : . (A.23)
pE) Tv(E)
The second “=" we use the equality D/ (z) + 5D (z) =aD,—_1(z). As for the last “=", we use
the Wronskian identity Wr(D,(z), Dy (—2)) = rﬁ)
And
_ Sim 3mv(éy)
By — Ve te (A.24)
re T(iv(§1))
BB = v, (A25)
&) _ o7 -
argf,; _T — argrg, —argl'(iv(§1))
S5t
== 2B(1,&) +210(&1) + v(EDlog (210" (§1)) — argl(iv(£1)). (A.26)

Finally we have

ﬂ(él)

1
MPCE) _ L _0@])
—ify 0

) + 0. (A.27)
The results of Appendix A.1 can also be applied to the local model near &3.
A.2. Local model near&;, j =2,4

RH problem A.3. Find a matrix-valued function M‘F¢-5) (¢) := M(PC"EZ)((; &) such that
MPCE) (¢: £) is analytical in C\ TP with £P¢ = {Re””} {Re’(”_¢)} shown in Fig. A.2.

- M(PC ) has continuous boundary values M(i €8 on 2P and
PC, PC,
MECR @) =MDy, ¢exr, (A.28)
where
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R e(—¢+mi R, b

args € (—m, )

R, e Rye?i

Fig. A.2. The contour %7€ for the case of &j,j=2,4

L2 " X
é-iv&_ e—%% ( 1 O)’ é‘ E]R+e¢l,
ng 1
N ic2 —r .
é-iva3e—(70’3 ((1) ;52>’ ¢ ER+€_¢1,
VP = . (A.29)
ivés —%2 5, Lo (¢
e It 1] eR e ,
=, P
R 2. £ )
{iv63e= 503 (; 1=|rg, | ) ; eRye oI

with v = v(&).
- Asymptotic behavior:

MEPCD () =1+ MPCD 1 LoD, - . (A.30)

The RH problem A.3 has an explicit solution, which can be expressed in terms of Webber
equation ( % + (% — % + a))D,(z) = 0. Taking the transformation

MPCE) — yy (yPer=ivoses?os (A.31)
where
! ?) arg ¢ € (0, 9),
1 _Ffz
0 1 ) arg¢ € (—¢,0),

_ 1 0
P(E) = ( Az 1>, wet € (67—, (A.32)

1 2
. 1—|iszl2 , argl € (—¢p +m,m),

1, else.
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The function 1 satisfies the following RH conditions.

RH problem A.4. Find a 2 x 2 matrix-valued function ¥ (¢) such that
- Y is analytical in C\R.
- Due to the branch cut along R_, ¥ (¢) takes continuous boundary values ¥+ on R and

V() =v-(OVY, (€R, (A.33)
where
Vi) = ( ! _r?'z _lf& ) . (A34)
- Asymptotic behavior:
Y=o N (14 MPOR T L0, as oo (A35)

Differentiating (A.33) with respect to ¢, and comblmng So3Yy = —ogw V¥, we obtain

v dy g ’
—+ = — + = VY. A.36
<d§+2w+ i T2 (A.36)
Since the same reasons presented in Appendix A.1, the matrix function (d ’2 o 1//) ¥~ has

no jump along the real axis and is an entire function with respect to {. Combining (A.31), we
can directly calculate that

¥ -1 _ dMPC) (PC.e0) LV (PCE)) !
(Gt oo = | 20 e (v

124“ [ MPC &)] (M(Pc,sz)>‘1_ (A37)

The first term in the R.H.S. of (A.37) tends to zero as ¢ — oco. We use MPC-8) () =T +
M I(PC’EZ)C ~l 4+ O(¢7?) as well as Liouville theorem to obtain that there exists a constant matrix
B3 such that

0 13(52) ﬁmat l_ I:O‘ M(PC Ez):l 0 i[MfPC’EZ)]]Z (A38)
B 0 2 T2 —ilM{" Py, 0 ’

which implies that [MEPC’&)]Q = —iﬁg'), [prc’&) ,6@') Using Liouville theorem
again, we have

("_h— w) graty. (A39)
dc 2

We rewrite the above equality to the following ODE system
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dym i_C &
Ay g
72‘ — V= By, (A41)
as well as
d
;’”2 + B s = Py, (A42)
¢
dy
y ;2 - —w =B ys. (A.43)

From (A.40) to (A.43), we solve that

2
d“yn +<2+__5<&>ﬂ<sz>>w _o,

d2
v (_5 L8 ﬂ@z)ﬂ(sz)) U1 =0,

dc? dz? 2
(A.44)
i ) o€ o P i ) o6 _
ac2 +<2 — B3 B )1// =0, d—{2+<_2 — B13 B >1lf22—0-

(A.45)

We set v = ,3@2),3@2) For 11, ¢ > 0, we introduce the new variable n = ;eJiTﬂ, and the first

equation of (A.44) becomes

d*
dn?

For ¢ e C4, 0 < Arg¢ < m, —3—” < Argn < 7.

n?
+<§—Z+zv>l/f11=0.

We have {1 = e~

(A.46)

T Dy (e Tig) ~

;i ”e_ﬂz, which corresponds to the (1, 1)-entry of (A.35). The other results for i are presented

below.
The unique solution to RH problem A.4 is
when ¢ € C4,

Y _am;
e~ TVEI D e (e i)

v =1, o . _ami
lﬁv%e FVEHIDy e 1(e )
12
when ¢ € C_,
wv(§p) ;i
e % Djyg(es'?)
Y() =

%ew(&)ml)w(&)—l (e4¢)
12
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bor®

IV(éz)e4(V(Sz) DD_iviey—1(e” 4§')
B

e3VEID_iy ey (e 30)
(A47)

3mi
—ivE)—1(e %)
3 3 .
e TEID i, (e 1E)
(A.48)
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Which is derived in [14, Section 4] and verified in [24, Proposition 5.5].
From (A.33), we know that (y_) "'y, = V¥ and

re, =Y 121 — Y- 21%+11

_ 3mv(ép)

V(&) zi € _3mi i 3w
= et Diyigy(e? O'W 9 (Diven (™ ¥ 0 + 5 Dy (e 46)
12

HV(Ez)

T e i
e % V(Ez)D,-,,(gz)(e 7 ’;) . 13(52) |:3§ (Dw@z)(e 7 g‘)) + = Dlv(éz) (e® 7 {)]

e~ 3v(E) . .
- WWI (D"”(&)(ﬂlf)’ Div@z)(e_T’C))
12

—Zv(&) e

= . . A.49
p&  T(=iv&) (A4.49)
And
> % _nv;&z)
() _ veTete = A50
o= rChvey (450
BB = v(&), (A.51)
argyy’ = 7 — argre, — argl(=iv(£2)

= % —2B(52,8) +210(&2) — v(E2)1og(=210"(§2)) — argl'(—iv(£2)). (A.52)

Asa consequence,

mrcer _ g L0 B +0(™?) (A.53)
c\ipy? 0 F |

The results of Appendix A.2 also can be applied to the local model near &,.
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